SWAM Solo Woodwinds
User Manual
v3.8.0
Saxophones, Clarinets, Double Reeds, Flutes
Table Of Contents

Before you start
Licensing
 macOS and Windows
 iOS
Specifications
 Required space after installation
Installation
 macOS and Windows
 Installation paths
 iOS
Hardware Requirements
 CPU load
 Audio interface (sound card)
 MIDI devices
Software Requirements
 macOS and Windows
 iOS
Using an appropriate range of Expression
Introduction
 Interaction with the product
 Main window
 Instrument parameters
 Main controls
 Audio section
 Header section
Expressivity
Play Modes
Timbre
 Source
 Capture
Pitch
 Master Tuning
 Micro Tuning
Advanced
 Instrument
 MIDI
Effects
Room & Position
Search 47
Controller Mapping 48
 Mapping Screen 49
 Assigned parameter status 49
 Unassigned parameter status 53
 MIDI Learn 53
 MIDI Inputs quick access 55
 MIDI Mapping Templates 57
 MIDI Mapping Table 57
Main menu 59
 Preset Management 62
 Preset navigation and selection 62
 Saving a User Preset 63
 Editing and Exporting Presets 64
 Default startup Preset and other options 65
Parameter Lock 67
Settings 68
 Audio Settings 68
 MIDI Settings 69
 Account & License 70
 Options 71
 Global Settings 72
 Local Network Permission 73
 Accessibility 75
 About 76
iOS 77
 List of locked parameters on iOS version 77
 iPad 78
 On-Screen Playing Surface 78
 Dynamic Envelope 81
 On-Screen Keyboard Setup 82
 iPhone 85
 Getting Started 85
 Editing 87
 On-screen playing surface 88
Key Switches 90
Instrument ranges 91
Tips and Troubleshooting 92
 No sound 92
 Understanding Ambiente 93
Why do SWAM instruments need to use the local network? 93
“Communication between instances failed” warning message 94
Issues when opening Logic Pro projects or templates 94
What are SWAM Templates? 94
Why is it called the SWAM Ecosystem now? 95
Backward compatibility with previous versions: Legacy Reverb mode explained 96
Best practices for adding multiple solo instruments of the same type 97
Why aren’t SWAM Solo Woodwinds v3.8.0 available for iOS? 98
Technical Support 99
Before you start

Although these instruments are intuitive and easy to play “out-of-the-box”, getting excellent results requires a certain amount of practice and experience. Please read this user manual carefully. It contains very important information that will help you achieve the best results in as short a time as possible. In addition, you can listen to the demos on the Audio Modeling website at audiomodeling.com/media, and on the Audio Modeling YouTube channel at youtube.com/c/AudioModeling.

The latest version of all SWAM manuals can be found at audiomodeling.com/manuals. Release Notes are available at audiomodeling.com/support/release-notes.

More information, tips, FAQ and Troubleshootings at kb.audiomodeling.com.

All SWAM instruments are designed to be PLAYED in real time by shaping the sound like a real instrumentalist would.

The Desktop version will function on any modern computer (see Specifications), using any host application which supports VST, VST3, Audio Units or AAX plug-in formats, or running as a standalone application. An example host software could be a sequencer or a Digital Audio Workstation (DAW) such as Camelot Pro, Ableton Live, Cubase, Logic, Pro Tools, LUNA, Reaper, Digital Performer, Studio One, etc.

The iOS version is currently available for both iPad and iPhone (see Specifications to check what OS version is supported). On this mobile platform, SWAM products come as Standalone, AUv3 plug-ins and Inter-App Audio (IAA) formats. Example host and DAW softwares are Camelot Pro, GarageBand, Logic Pro, Cubasis and AUM.

These instruments use Audio Modeling’s proprietary SWAM (Synchronous Wave Acoustic Modeling) technology conceived by Stefano Lucato. Combined with Physical Modeling, they provide exceptional playability and realism. The sound is not produced by playing back samples, using pre-recorded articulations; these are complex virtual instruments, capable of shaping almost any kind of articulation and phrasing in real time. They can be played using any MIDI device such as a keyboard, breath or wind controller.

Indeed, it is essential that the instruments are controlled using a suitably capable set of MIDI controllers, as described in this manual.

NOTE: As with a real musical instrument, SWAM instruments allow continuous movement across the full range of dynamics — from *pp* to *ff* — without producing any phasing artifacts.

To accomplish this, it’s necessary to use a suitable continuous physical MIDI controller such as an expression or volume pedal (usually CC11 or CC7 MIDI messages), a breath or wind controller (usually CC2 MIDI messages) or one of the many other expressive controllers on the market today.
WITHOUT SUCH A CONTROLLER, THE INSTRUMENT **WILL NOT WORK** WHEN PLAYED IN REALTIME. Instead, it will display the warning “Having Trouble with No Sound? It looks like you’re not sending an expression control message (default CC11) to your SWAM instrument”, with actions to select or map an external MIDI controller.

Other physical MIDI controllers, like sliders, knobs or a modulation wheel, can be used for this purpose, although they often do not provide the level of control required for optimal results. Please refer to other sections of this manual for further details.

When used for studio production, it's necessary to provide either a MIDI Expression curve or Expression Automation.

Note: the MIDI note naming convention we use is based on Middle C = C3, corresponding to MIDI note number 60. It's possible to switch to Middle C = C4 from the Options page.
Licensing

macOS and Windows

The License Key we provide can be activated on up to four computers at the same time. Refer to the Installation paragraph for instructions on how to authorize SWAM products.

To move an authorization to a different computer, please login to the Customer Portal at my.audiomodeling.com and delete it from the activations list of the corresponding License Key.

The full terms and conditions can be found in the End User License Agreement (EULA) provided with the product. Please refer to the “Installation Paths” paragraph of this user manual to locate the EULA on your system.

iOS

Licensing on iOS is managed by Apple. Please refer to AppStore and Apple terms and conditions.
Specifications

macOS 10.13 (High Sierra) – 14 (Sonoma) *

- Standalone, Audio Units, VST, VST3, AAX 64bit
- NKS (Native Instruments Komplete Kontrol) - VST3 only

Windows 10, Windows 11

- Standalone, VST, VST3, AAX 64bit
- NKS (Native Instruments Komplete Kontrol) - VST3 only

iOS 11 – 17

- Standalone, AUv3, IAA

* Apple Silicon architecture supported natively

All SWAM apps and plugins navigable by the native accessibility frameworks on macOS, Windows, iOS.

Required space after installation

SWAM Saxophones

macOS

Product installer is 320 MB. The required space is 32 MB per single plugin format plus 143 MB for shared resources and assets. This results in a total ranging from 271 MB to 783 MB for the Saxophones (4 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 150 MB for each instrument instance.

Windows

Product installer is 250 MB. The required space is 16 MB per single plugin format plus 143 MB for shared resources and assets. This results in a total ranging from 160 MB to 400 MB for the Saxophones (4 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 160 MB for each instrument instance.
SWAM Flutes

macOS

Product installer is 212 MB. The required space is 32 MB per single plugin format plus 50 MB for shared resources and assets. This results in a total ranging from 178 MB to 690 MB for the Flutes (4 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 100 MB for each instrument instance.

Windows

Product installer is 160 MB. The required space is 16 MB per single plugin format plus 50 MB for shared resources and assets. This results in a total ranging from 114 MB to 306 MB for the Flutes (4 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 70 MB for each instrument instance.

SWAM Double Reeds

macOS

Product installer is 300 MB. The required space is 32 MB per single plugin format plus 121 MB for shared resources and assets. This results in a total ranging from 249 MB to 761 MB for the Double Reeds (4 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 117 MB for each instrument instance.

Windows

Product installer is 230 MB. The required space is 16 MB per single plugin format plus 121 MB for shared resources and assets. This results in a total ranging from 185 MB to 441 MB for the Double reeds (4 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 128 MB for each instrument instance.

SWAM Clarinets

macOS

Product installer is 185 MB. The required space is 32 MB per single plugin format plus 82 MB for shared resources and assets. This results in a total ranging from 146 MB to 402 MB for the Clarinets (2 instruments). The total range depends on the number of plugin formats installed.
RAM occupancy: about 114 MB for each instrument instance.

Windows

Product installer is 140 MB. The required space is 16 MB per single plugin format plus 82 MB for shared resources and assets. This results in a total ranging from 114 MB to 210 MB for the Clarinets (2 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 130 MB for each instrument instance.
Installation

macOS and Windows

Product Registration and Installation

1. login to our Customer Portal (https://my.audiomodeling.com); create a new account if you have never signed up;
2. select “Register a new product”;
3. type the Redeem Code provided, select “Next”;
4. the portal will send an email to you. Click the confirmation link on the email;
5. download, install and launch the “Audio Modeling Software Center”, available at https://audiomodeling.com/support/install-and-update
6. login with your credentials to download and authorize the products on your computer.

If you installed a previous version

The updates are managed through the Audio Modeling Software Center.

NOTE: the products can be activated “online” only, i.e. your computer must be connected to the Internet at the time of authorization. If you need to work offline, just connect to the Internet for the time required for the authorization, then disconnect once the authorization is complete.
Installation paths

macOS

- Standalone app, End User License Agreement, Uninstaller are located in the folder chosen in the Audio Modeling Software Center, by default: /Applications/Audio Modeling/(Product name)
- Audio Units plug-ins are located under: /Library/Audio/Plug-Ins/Components
- VST3 plug-ins are located under: /Library/Audio/Plug-Ins/VST3
- VST plug-ins are located under: /Library/Audio/Plug-Ins/VST
- AAX plug-ins are located under: /Library/Application Support/Avid/Audio/Plug-Ins
- Default presets and auxiliary resources are stored under: /Users/Shared/Audio Modeling/SWAMv3
- User presets are stored under: ~/Library/Audio Modeling/SWAMv3

Windows

- Standalone app, End User License Agreement, Uninstaller are located in the folder chosen in the Audio Modeling Software Center, by default: C:\Program Files\Audio Modeling\(Product name)
- VST3 plug-ins: the installation path is defined in the Audio Modeling Software Center, default: C:\Program Files\Common Files\VST3
- VST plug-ins: the installation path is defined in the Audio Modeling Software Center, default: C:\Program Files\VSTPlugins
- AAX plug-ins are located under: C:\Program Files\Common Files\Avid\Audio\Plug-Ins
- Default presets and auxiliary resources are stored under: C:\Users\Public\Documents\Audio Modeling\SWAMv3
- User presets are stored under: %AppData%\Audio Modeling\SWAMv3

iOS

Installation and updates are managed through the AppStore.
Hardware Requirements

CPU load

The realism and expressiveness of the SWAM instrument set can be CPU intensive. It therefore requires a modern computer with at least a 1.6 GHz Core 2 Duo CPU for a single instance of any SWAM instrument. Additional instances will require both a more powerful processor and a low-latency audio driver/device (e.g. ASIO), especially to play the instrument in real time.

Less powerful systems may also prove satisfactory, but may require larger buffer sizes, which incur higher latencies.

Note: This may not necessarily result in an actual problem for music production. Using the freeze feature or bouncing the single MIDI tracks to audio provides a useful remedy.

Audio interface (sound card)

A good quality audio interface with suitable low-latency drivers is required. On Windows, ASIO drivers are recommended. Suggested settings for buffer size at 44.1 or 48 kHz are 64, 128, 256, or 512 samples (larger buffers provide higher latency, but less CPU load). Onboard audio devices are often suitable on modern computers, iPad and iPhone.

NOTE: sample rate values lower than 44.1 kHz are not supported.

MIDI devices

SWAM instruments (like any other virtual instrument) can be successfully used without the need for any additional hardware by drawing the controller curves and programming the notes directly in the host sequencer. However, a much more “human” and interactive configuration is recommended, especially when playing in real time, using external MIDI devices: a MIDI keyboard with at least 5 octaves, mod wheel & pitch bend, connected to the computer via USB or an external MIDI interface, equipped with a set of physical continuous MIDI controllers (usually knobs or sliders) to control effects like bow pressure, bow position, tremolo, harmonics, etc.

Although the dynamics can be controlled by another physical controller (knob, slider, ribbon, XY-pad), a pedal is highly recommended. As an alternative, a breath controller, such as a Yamaha BC3, TECControl BC and BBC2, Photon by IMOXPLUS, or Hornberg Research HB1, can be used. Woodwind or Brass players may prefer to use a wind controller such as a Yamaha WX, YDS-120 or YDS-150, Akai EWI (USB, 4000S or 5000), Aodyo Sylphyo, EMEO, Roland Aerophone, Synthophone, EVI (Electronic Valve Instrument), NuRAD, WARBL, Travel Sax, Robkoo R1 - all of them provide excellent results. MIDI Polyphonic Expression devices
like the Seaboard, LUMI and Lightpad by ROLI, LinnStrument by Roger Linn Design, or the Instrument 1 by Artiphon are fully supported.

Alternative controllers include Neova Ring by Enhancia, Toucé and Osmose by Expressive E, Sensel Morph, Joué, and Leap Motion by Ultraleap.

Note: On EWI 4000s or similar please do not set the option to mix the pitch-bend or vibrato to breath sensor (“Pb” or “bo” options on EWI 4000s). This can produce unnatural vibrato behavior. SWAM engine applies the right behavioral models to the relationships between pitch and dynamics based on the physics of the instrument. These relationships are different for each musical instrument.
Software Requirements

macOS and Windows

Standalone

We provide a Standalone version of each instrument, please check the Installation Paths paragraph of this User Manual to locate the applications.

Plugins

A DAW (Digital Audio Workstation) or other host capable of running VST2.4, VST3, Audio Units or AAX plugins is needed to run the SWAM instruments. If you do not have a host application capable of running VST or AU plugins, you can install a free host application such as Camelot Free for desktop (camelotpro.com).

A list of compatible hosts and DAWs can be found on our Knowledge base:

audiomodeling.com/support.

iOS

Standalone

We provide a Standalone App of each SWAM Solo Woodwinds instrument.

Plugins

A DAW (Digital Audio Workstation) or other host capable of running SWAM Solo Woodwinds instruments as AUv3 or IAA plugins is needed.

If you do not have a host application capable of running AUv3 plugins, you can get our Camelot Pro live performance host on the AppStore.
Using an appropriate range of Expression

This is an extremely important aspect for getting the optimal expressiveness and realism with virtual instruments.

All real physical instruments require a much greater degree of effort to achieve the highest possible dynamics for that instrument. This is not the case for most physical MIDI controllers; it is indeed very easy to push an expression pedal, or a slider, to the maximum and leave it there forever. Oddly enough, even breath and wind controllers tend to jump very easily to the highest dynamics (unless carefully set), so that the most expressive range (mp to mf) is seldom exploited. This results all too often in the virtual instrument being played in an excessive range of dynamics, leading unavoidably to a poor, unrealistic performance.

Please keep in mind that the key to expressiveness and realism is a proper use of dynamics. Always monitor the input expression value on the main display and adjust the dynamics accordingly. A useful trick is to set the overall monitoring volume fairly high. This automatically prevents any inclination toward over using the higher levels of dynamics.

The Expression slider on the main GUI becomes “hot”, i.e. with a red halo surrounding it, if the level of expression stays constantly above 75%. When you see such a red alert warning, please consider avoiding such extensive use of higher dynamics.

It’s also important to optimize the general volume of your loudspeakers/headphones at an average value of Expression. Too low an output level would easily induce the user to use high Expression levels, usually yielding excessively “biting” sounds.
Introduction

SWAM Solo Woodwinds is a collection of solo instruments conceived and developed by Stefano Lucato and the Audio Modeling team. These instruments are based on a hybrid technology that combines Sample Morphing technique and Physical Modeling synthesis.

SWAM stands for Synchronous Waves Acoustic Modeling, and it is a proprietary technology that exploits the knowledge of phase and length of each waveform period.

The **SWAM Solo Woodwinds** collection includes four products: Saxophones, Clarinets, Double Reeds, and Flutes.

Each product provides multiple instruments, each one comes as a Standalone application, VST, VST3, Audio Units and AAX plugins for desktop; and Standalone App, AUv3 and IAA plugins for iOS.

In addition to standard SWAM controls such as staccato/legato (with velocity- or CC-controlled portamento time), dynamic expression, and vibrato depth and frequency, there are several additional parameters to control instrument behavior which are specific to woodwind playing techniques.

Starting with version 3.8.0, SWAM Solo Woodwinds include Ambiente, a sophisticated room simulator and spatializer that positions instruments within a 3D virtual space. It accurately simulates the reflections of sound waves from the instruments within this space through geometric reflection calculations. It also takes into account the absorption properties of the room's materials and its size, offering a realistic spatial experience rather than a mere reverb effect.
Interaction with the product

You can control the parameters of SWAM instruments directly through the user interface (UI) using a mouse, finger on touch devices, or other pointing systems like Eye Trackers or OCR. Additionally, interaction is possible via Screen Reader, keyboard shortcuts, or MIDI for parameters that are mappable and effectively mapped. All SWAM products have been validated by visually impaired users for a high level of accessibility.

Parameters are graphically represented by knobs, sliders, button rows with all options explicitly listed, or toggle buttons. For toggle buttons, you can press and hold to get an explicit list of values.

![Overblow parameter](image)

These buttons also have a small graphical indication of the number of available options via hatching, with the selected value highlighted through a more pronounced mark.

![Toggle button](image)

The interface is designed for various uses on different screen sizes, devices, and operating systems. The Main “...” menu on the home screen acts as a guided wizard that provides access to almost all functions.

Next to each object, the contextual “...” menu offers access to the most important and contextual options, encouraging users to explore further.

System parameters are categorized on the home screen into different groups to make it easier for less experienced users or infrequent users to understand and get started. However, the experienced and frequent user has access to the Search button located at the top of the header. This tool provides at the same time an overview of all parameters and a search function to quickly find what is not immediately visible.
Main window

The main window shows the most important parameters, instrument monitors and animations.

Instrument parameters

All parameters have been grouped in six categories:

- **Expressivity**: parameters that allow the physical player's expressivity to affect the instrument.
- **Play Modes**: parameters that act on the details of how the emulated player plays the instrument.
- **Timbre**: parameters that affect the instrument's timbre.
- **Pitch**: Master Tuning, Pitch, Transposition and microtonal settings.
- **Advanced**: additional parameters, especially for expert users.
• **Room & Position / Effects:** if the Legacy Reverb mode parameter is set to OFF, “Room & Position” opens Ambiente, the virtual room and positioning environment; otherwise, it shows the parameters affecting the audio signal processing applied at the final stage.

The most common and important parameters are presented on the main GUI.

Main controls

• **Instrument** (left/right arrows)
 Use the arrows to select different instrument timbres (corresponding to different instruments or microphone placements).

• **Flutter:** flutter tongue intensity.

• **Growl:** growl intensity. For a “cleaner” sound, this should be set to zero.

• **Breath Noise:** breath noise intensity.

• **Key Noise:** key noise intensity.

• **Pipe Model:**
 - **Keys:** the instrument model is controlled by Keys.
 - **Slide:** the instrument model is controlled by a Slide.

• **Formant:** changes the formants, thus the timbre of the instrument.

• **Harmonic Structure:** spectral characteristics of the instrument (balance between odd and even harmonics).

• **Overblow:** clicking this option triggers overblow on any quick changes to the dynamics.

• **RESET:**
 - **Initialize:** reset sound engine parameters and MIDI mapping
 - **Advanced:**
 - **Reload “current preset”:** reload the current selected preset, losing all changes made from the latest saved settings
 - **Sound Engine:** reset or load sound engine parameters
 - **MIDI Mapping:** reset or load MIDI mapping settings
- Micro Tuning: reset or load micro tuning settings
- **PANIC**: use this in case of stuck notes

Audio section

- **Room & Position / Effects**: if the Legacy Reverb parameter is set to OFF, ‘Room & Position’ opens Ambiente, the virtual room and positioning environment; otherwise, it shows the parameters affecting the audio signal processing applied at the final stage. The Legacy Reverb mode was introduced for backward compatibility with previous versions to ensure that existing projects are not unintentionally altered. After the update, existing instances will automatically open in Legacy Reverb mode. However, it is recommended to take advantage of the room simulator by keeping the Legacy Reverb parameter set to OFF.

- **Pan Pot**: pans the output signal left and right. Available only if Legacy Reverb mode is ON.

- **Main Volume**: main output volume. This can be either 'Pre Room' or 'Post Room', depending on the ‘Main Volume Processing’ parameter located in the Advanced / ROOM page. Selecting 'Pre Room' means the main volume will only affect the source signal, leaving the room ambiance unaltered. Conversely, selecting 'Post Room' means the main volume will affect the overall output, including both the source signal and the room ambience.
Header section

- **SWAM logo**: selection of the SWAM logo open the About section

- **Main menu icon**: opens the main menu page that provides access to:
 - Save & Load
 - Reset
 - Controller Mapping
 - Parameter Lock
 - Import
 - Export
 - Settings

- **MIDI Mapping icon**: opens MIDI mapping management section.

- **SEARCH icon**: opens the search screen for browsing parameters all at once with a big picture of the entire system.

- **Playing Surface icon** (only for iPadOS version): open the playing surface for playing the instrument on the iPad glass.

 NOTE: on iPhone, the playing surface is available rotating the device to landscape orientation.
Expressivity

- **Expression**: main expressive control.
- **Vibrato Depth**: controls the amount of vibrato.
- **Vibrato Rate**: controls the average frequency of the vibrato applied to the model.
- **Growl**: growl intensity. For a “cleaner” sound, this should be set to zero.
- **Flutter**: flutter tongue intensity.
Play Modes

- **Pipe Model:**
 - Keys: the instrument model is controlled by Keys.
 - Slide: the instrument model is controlled by a Slide.

- **Chromatic**
 - OFF
 - ON: activates an automatic chromatic scale during slow portamentos on larger intervals.

- **Attack Start**: progressively cuts the attack for a more immediate attack response. Only by setting this to “0” can the complete original attack be played.

- **Legato Mode**: two different types of legato can be selected:
 - Gliss legato with portamento (glissando).
○ Expr straight legato (no portamento).

- **Key Noise**: key noise intensity.

- **Alt. Fingering**: plays the current note with a different key (i.e. a different pipe path), even if the pitch of the note is the same, the timbre is slightly different.

- **Pipe Split**: (only for Flutes) shifts the register breaks of a flute by +/- 1 semitone. Crossing a register break when playing a real flute requires a rapid change of both the pipe length and the overtone. This leads to a characteristic “knock” when playing legato, particularly audible when playing a trill. Setting the PipeSplit to “Auto” eliminates this unwanted side effect; if the trill crosses this register break, the split point will be automatically shifted +/- 1 semitone to remain outside the trill range.

Default register breaks (i.e. when PipeSplit = 0) are:

- **Flute**: D4 / Eb4, D5 / Eb5, A5 / Bb5
- **Piccolo**: D4 / Eb4, D5 / Eb5 A6 / Bb6 **
- **Alto Flute**: Bb3 / B3, Bb4 / B4, F5 / Gb5
- **Bass Flute**: Eb4 / E4, Eb5 / E5, Bb5 / B5 *

* By default, the Bass Flute is transposed one octave above its original pitch in order to fit a 5-octave keyboard

** By default, the Piccolo is transposed one octave below its original pitch in order to fit a 5-octave keyboard

- **Overblow Threshold**: crossfade between a brief squeak on attack (value below 0.5), or a longer overblow (value above 0.5), if overblow is triggered by a CC. Overblow Threshold has no effect when overblow is triggered by keyswitch [Note: Squeak does not apply to Flutes].

- **Overblow**: clicking this option triggers overblow on any quick dynamic changes.

- **Fall Down**: clicking this button triggers a fall. This effect is also assigned to keyswitch C.
Timbre

Source

- **Instrument**: changes the instrument timbre (corresponding to different instruments or microphone placements).

- **Harmonic Structure**: spectral characteristics of the instrument (balance between odd and even harmonics).

- **Sub. Harm**: subharmonic intensity. Note: the Sub Harm parameter is not available for the Flutes.

- **Formant**: changes the formants, and thus the timbre, of the instrument.

- **Modal Res. Gain**: changes the amount of lower harmonics persistence.

- **Breath Noise**: breath noise intensity.

- **Timbral Correction**: enables or disables the Harmonics Timbral Shaping.
○ Harmonic A Gain: the gain amount for harmonic selected by “Harm. A”

○ Harmonic B Gain (locked on iOS): the gain amount for harmonic selected by “Harm. B”

Capture

- **Compressor**: controls how much dynamic compression is applied to the output.
- **EQ Enabled**: enables or disables the Equalizer (see next).
- **EQ Low Gain**, **EQ Mid Gain**, **EQ Mid Freq**, **EQ High Gain**: Equalizer parameters. Note that frequency ranges differ between instruments, as they have been calibrated for the harmonic contents of each instrument.
Pitch

Master Tuning

- **Master Tune**: master tuning of the instrument displayed both in Hz and cents.
- **Pitch Bend Up**: the maximum amount of upward pitch bend, in semitones.
- **Pitch Bend Down**: the maximum amount of downward pitch bend, in semitones.
- **Transpose**: the amount to transpose the instrument, in semitones.
Micro Tuning

- **Favorites**: it is possible to store up to seven different settings. Click and hold the preset slot to store the current configuration; click on any preset slot to recall the preset. Click on the Clear button to reset the current configuration to the default state.

- **Micro Tuning Keys**:
 - **Activation**: Click on any key to toggle the detune, by the amount shown on the button.
 - **Edit**: Click on the detune value to adjust. The value is presented in cents (hundredths of a semitone).

- **Root**: select the root note of the micro tuning scale.
• **Temperament**: if set higher than zero, this applies a kind of “spread intonation”:
 ○ it does not affect the pitch in the middle of the instrument
 ○ the higher the pitch, the more upward detuning is applied
 ○ the lower the pitch, the more downward detuning is applied

 This means that the overall intonation of the instrument can be “spaced apart.”

 If set lower than zero, it does the opposite: it applies a kind of “compressed intonation.”

• **Microtuning KS**:
 ○ OFF: disable key switches for microtuning
 ○ ON: enable key switches for microtuning

• **Reset Microtuning KS**:
 ○ OFF: Microtuning KS activation does not reset or affect current detuning
 ○ ON: Microtuning KS activation resets the detuning applied.

• **Cavit Scale Ultimate** (by Cavit Artanlar): enables the “SWAM Microtuning” SysEx protocol, which allows “Cavit Scale Ultimate” iOS app to control microtuning and transposition, and to apply musical nuances typical of Arabic and Eastern music.

• **MAQAM** (by Mazeka Toys - mazekatoys.com):
 ○ OFF: remove the Factory MIDI MAQAM configuration.
 ○ ON: apply MAQAM Factory mapping. (Note: all mappings to parameters assigned to CC from 102 to 114 will be removed). This allows the use of a MAQAM remote controller to apply micro tuning and transposition on the fly.

 Note: be sure MAQAM is connected properly through a MIDI interface so that MIDI events can reach the SWAM application or plugin.

• **MAQAM Transpose**:
 ○ Note: control keyboard transpose.
 ○ Root: control micro tuning transpose.
Applying microtuning through SysEx

It's possible to control Microtuning and Transposition through MIDI SysEx messages. SWAM responds to a few SysEx protocols: SWAM Microtuning protocol, Custom protocol and Yamaha XG arranger protocol.

SWAM Microtuning protocol

Note: Be sure “Cavit Scale Ultimate” switch is set to ON in the Pitch / Microtuning view.

Byte 1 - Beginning of sysex: F0H
Bytes 2, 3, 4 - Audio Modeling Manufacturer ID: 00H 21H 2DH
Bytes 5, 6 - Model ID: 00H 00H
Byte 7 - Command type: 00H (Read), 01H (Write)
Byte 8 - Category: 00H (System)
Byte 9 - Parameter: 00H (Transpose), 01H (Microtuning)
... - Data bytes
Byte N - End of sysex message: F7H

Data bytes

Transpose (1 byte):
Byte 10 - Transposition value in semitones: 00H -> 7FH
 < 40H: negative transposition
 40H: 0 cents
 > 40H positive transposition

Microtuning (3 bytes):
Byte 10 - MIDI note number: 00H -> 7FH
Byte 11 - Sign:
 <= 40H positive
 > 40H negative
Byte 12 - Microtuning value in cents: 00H -> 64H (0 to 100 cents)
Custom Protocol

This protocol allows to change both Microtuning and Transposition on the fly through SysEx messages.

1) Microtuning message

Each message is 4 bytes:

1st byte: Beginning of sysex (F0)
2nd byte: Note value (00=C, 02=C#, 04=D, ..., 12=A, 14=A#, 16=B)
3rd byte: Detuning value (00 = 0, 4E = -50)
4th byte: end of sysex (F7)

F0 10 10 F7: reset all notes to not detuned

Examples:

F0 00 4E F7: Note C = -50 cents
F0 10 4E F7: Note G# = -50 cents
F0 16 00 F7: Note B = 0 cents

2) Transpose message

Each message is 3 bytes:

1st byte = Beginning of sysex (F0)
2nd byte = Transpose value (37=-9, 38=-8, 39=-7, 3A=-6 ... 40=0 ... 48=+8, 49=+9)
3rd byte = End of sysex (F7)

F0 10 F7: reset transpose to 0
Yamaha XG arranger protocol

Each message is 9 bytes:

1st byte: Beginning of sysex (F0)
2nd byte: Manufacturer ID - Yamaha (43)
3rd byte: Device ID (values between 0x10 and 0x1F are allowed)
4th byte: Model ID - XG (4C)
5th byte: Address High (08)
6th byte: Address Mid (00)
7th byte: Address Low - Note value (41=C, 42=C#, 43=D, ..., 4C = B)
8th byte: Detuning value (04=-60, 05=-59, 06=-58, ..., 40=0, ..., 7B=+59, 7C=+60)
9th byte: End of sysex (F7)

Examples:

F0 43 10 4C 08 00 41 5E F7: Note C = +30 cents
F0 43 10 4C 08 00 41 18 F7: Note C = -40 cents
F0 43 10 4C 08 00 4A 0E F7: Note A = -50 cents

Applying microtuning using key switches

You can also apply microtuning to notes using key switches. To do this you must first go to Advanced -> MIDI and enable the key switches using the “KSOctave” parameter.

Then go to Pitch -> MICRO TUNING and set the “Microtuning KS” parameter to “ON”.

![Micro Tuning KS](ON)

This parameter can be assigned to a MIDI Control Change. A handy mapping is CC “64”, i.e. the Sustain pedal, which is the most suitable option for this task.

When “Microtuning KS” is active, you can press the appropriate key switches that correspond to the notes you would like to detune. For example, by pressing the E1 key switch detuning will be applied to all E notes.
How to detune selected notes

1. Set the “Microtuning KS” parameter ON by pressing and holding down the Sustain pedal (or send a value greater than 64 via the CC you have assigned for Microtuning KS); the key switches will turn light gray.

2. Press any key switches (even multiple at the once) that correspond to the notes you want to detune.

3. Exit “setup” mode by releasing the sustain pedal (or send a value below 64 via the CC assigned for this task).

For example: if you need an Arabic scale in C and want to detune all E and B notes -50 cents, the steps would be:

1. Press and hold the sustain pedal

2. Press E1 and B1

3. Release the sustain pedal

The affected notes and the detune amount is displayed in the Pitch -> MICRO TUNING page.
If the “Reset Microtuning KS” parameter is ON, as soon as you re-enable Microtuning KS (by pressing the Sustain pedal or sending a value greater than 64 via the CC you have assigned for this task), the current detuning of all the notes will be cleared.

Keeping the pedal pressed, you can immediately detune a new set of notes by pressing the appropriate key switches.

This allows you to apply different microtuning scales on the fly.

If you don’t want to reset the microtuning every time you re-enable Microtuning KS set “Reset Microtuning KS” parameter to OFF.

Microtuning Templates

From the Main “… Menu and Preset Manager it is possible to Save and Recall Microtuning Templates. A list of Factory Microtuning Templates is provided.
Advanced

Instrument

- **Random Dynamic**: controls random modulation of dynamics and pitch.
- **Dynamic Pitch**: amount of pitch modulation applied while changing the dynamics.
- **Panpot Type (locked on iOS)**
 - Dyn1, Dyn2 - emulates small movements of the player.
 - Acoustic - adjusts the position of the instrument in the sound field, but does not affect the reverb.
 - Balance - affects both the instrument and the reverb.
- **Dynamic Harmonic**: Amount of overtone harmonics and subharmonic modulation for attack and changes in dynamics [this parameter is not available for the Flutes].
- **Release Time**: release time on note off.
- **Attack To Sustain**: affects the velocity-dependent duration of the transition from attack to sustain.

- **Auto Expression**: the slider controls the depth of legato transitions.

- **Breathy ppp**: adds a breathy, noisy pianissimo layer useful when playing certain jazzy styles. Acting on this option triggers a complete reload of all audio resources, so any currently active note will be terminated.

- **Vibr. Rand. Rate**: randomization of vibrato intensity and rate.
MIDI

- **MIDI Profile:**
 - MPE: for MIDI Polyphonic Expression compatible devices.
 - Legacy: MIDI 1.0 devices.

- **MIDI Channel:** is the MIDI channel over which the sound generator receives notes and controllers that affect the sound (default is ANY). Note that this can be different from the keyswitches MIDI channel, so it is possible to control keyswitches from a different device. For MPE Devices this is forced to ANY.
• **Portamento Control:**
 - Velocity: the portamento time is controlled by the note on velocity of overlapping notes.
 - CC: the portamento time is controlled by a MIDI Continuous Control (such as Control Change, AfterTouch, NRPN)

• **Portamento Max Time:** controls the portamento time, set to OFF to disable portamento (no portamento when this value is < 0.15).

• **Transition Vel. Sens:** controls the relationship between velocity and portamento duration when Portamento Control is set to Velocity.

• **Note Off Velocity** (if supported):
 - OFF: fixed Note Off velocity at 112
 - ON: get legato retrigger velocity from note off velocity

• **Attack Control** - how the attack of the note is controlled:
 - Vel. Hard - controlled strongly by the note on velocity.
 - Vel. Soft - controlled weakly by the note on velocity.
 - Expression - controlled by the shape of expression control.

• **Wind Controller Release Mode:** overrides the current Release Time value with the lowest value and disables the Release Time parameter. Useful especially for Wind Controllers, as they send Note Off events when Expression reaches the minimum value. This setting makes the instrument more responsive, e.g. when double- or triple-tonguing.

• **Breath Ctrl Mode** (Breath Control Mode):
 - OFF
 - ON: suitable for Breath Controllers, allows the player to produce another note attack by using the breath envelope while holding a note.

• **Breath Ctrl Attack Sens.** (Breath Control Attack Sensitivity) controls the sensitivity of the note on attack strength for notes triggered in Breath Control Mode.

• **Breath Ctrl Hi-Res Threshold:** when Breath Control Mode is set to ON, (Breath Control Hi-Resolution Threshold) sets the threshold for a note on event to be triggered when using MIDI Hi-Resolution messages for the Expression parameter.
- **Attack-Expr. Bias**: modifies the steepness of the attack in function of the Note-On velocity, depending on the Expression value at Note-On (disabled in wind controller mode).

- **KS MIDI Channel** (Keyswitches MIDI Channel): select the MIDI channel to receive keyswitch information. Select from channel 1 to 16 or ANY.

- **KS Octave** (Keyswitches Octave Transpose): allows you to transpose = keyswitches to begin in the octave from C-1 to C2, or turn off keyswitches (OFF).

- **KS Velocity Remap** (Keyswitches Velocity Remapping): since some keyswitches are velocity-dependent, this parameter controls the distribution of the thresholds between states.
Room

Legacy Reverb:

- **ON:** choose this option if you want to use the legacy internal reverb available in the previous product versions. This option is recommended if you have already projects using that reverb or a third party external reverb.
- **OFF:** disable the legacy Reverb and activate Ambiente, the onboard virtual room and position engine. This option is recommended to get the most realistic sound for each instrument that is located in the same room.

Main Volume Processing:

- **Pre Room:** the volume control is applied to the sound source, but not to the virtual room. This ensures that reverb is not affected by eventual volume automation.
- **Post Room:** the volume control is applied to the sound signal after the virtual room processing. In case of volume control, reverb is also affected.
- **Reverb Modulation**: when set to ON, reverb has a lusher, silky sound, but it requires more CPU power.

- **Source Delay Mode**: in real acoustic environments sound travels at a given speed, so there is a latency between the sound generation time and the time the sound signal is captured by the microphone (or listener’s ears). This applies also to the traveling time of the sound waves reflected by the room surfaces. Source Delay Mode controls how the sound traveling time is computed.

 - No Delay: to avoid extra latency when playing the section in real-time, direct sound traveling time is ignored. Traveling time of the reflected waves is computed subtracting the direct wave traveling time.

 - Real Delay: direct sound traveling time is not ignored, behaving like in the real acoustic environment. This can lead to latency, when playing the instrument in real-time.

 - Nearest: direct sound traveling time is ignored for the section closest to the microphone only. All other sound wave traveling latencies are computed accordingly.
Effects

Visible only when Legacy Reverb is ON (Advanced Settings / Room)

- **Early Reflection Amount**: amount of Early Reflections mixed in, useful especially for building sections.
- **Reverb Mix**: controls the amount of reverb added to the dry signal.
- **Reverb Time**: controls the decay time of the reverb tail.

Room & Position

Visible only when Legacy Reverb is OFF (Advanced Settings / Room)

All SWAM instruments now come equipped with the revolutionary Ambiente room simulator. This significant evolution allows SWAM instruments to "talk" to each other and share the same virtual room. Unlike a simple reverb, Ambiente is a sophisticated spatializer that lets you place instruments in specific locations within a virtual space.
With Ambiente, you can utilize up to four distinct rooms simultaneously. Three of these rooms are fully customizable, allowing you to choose room size, materials, and microphone distance. The fourth room is designed for close-miking all sources, enabling seamless integration with third-party spatializers or external reverbs.

Each SWAM instance communicates with others, sharing room and instrument position information. This means you can manage this functionality from any SWAM instrument without opening each one individually. Communication is handled through a local network protocol, so no internet connection is required, but certain technical requirements must be met. For more details, please refer to the Global Settings paragraph.
Using the Ambiente room simulator

Overview of the Interface

In the Ambiente room simulator, you will find four tabs at the top of the interface representing the four available rooms. The first three tabs correspond to the customizable rooms, while the last tab represents the "Close Mic" room. To select a room, simply click on the corresponding tab.

Header Controls

In the header, at the top right corner, there are two important buttons:

- **Manage**: This button allows you to manage the current room, including renaming the room and moving instruments to this or other rooms.
- **Close**: This button closes the room simulator and returns you to the main instrument view.

Main Screen Views

The main screen offers two views for managing your instruments:

- **Room View**: This graphical interface represents the room as viewed from above. You can drag and drop instruments to position them within the space.
- **List View**: This list-based interface allows for easier management of instrument positions, particularly useful for screen reader users.

Room Type Selector and Room Customization

Above the main view, you will find the Room Type selector, which lets you choose from up to 18 different room types. These types are derived from combinations of parameters such as absorption materials and room size, which can be adjusted in the lower section of the interface.

Room Map and Microphone Distance

In the lower section, you'll find the room map, a small representation of the room showing the distance from the stereo recording microphone. You can adjust the microphone distance using the fader located to the right of the room map.

Templates Shortcut

A shortcut to the Templates section is available for quickly loading preset room and microphone configurations, whether they are Factory presets or user-defined settings.
With these features, the Ambiente room simulator provides a powerful and flexible environment for positioning your instruments, enhancing your workflow, and unleashing your creativity.

Search

The Search view has been created to improve the experience to beginners, experts and visually impaired users. Beginners can find any parameter by a handy search feature without the need to browse all sections. For expert users, it offers a streamlined page where all parameters can be easily located, viewed and compared, to have the big picture of the sound engine. Simultaneously, it is designed to be accessible, compatible with screen readers, facilitating seamless navigation for users who are blind or visually impaired.

The “Search Parameter” field allows users to highlight only those parameters containing the entered text. This feature ensures that, when using a screen reader, only the relevant parameters are vocalized by the text-to-speech synthesis.
Start typing in the search field, and matching results will be highlighted. Clicking or tapping on a parameter will open a popup window with the edit controls.

Controller Mapping

The MIDI Controller Mapping section allows the user to manage the mapping between an external MIDI controller and the instrument parameters.

To access this page, click on the MIDI mapping icon in the header, or from the Main Menu -> Controller Mapping -> Assign & Learn. By default, the “ASSIGN” mode is selected.

In this view/context, the parameters assigned to a controller are highlighted with a purple area with dashed borders; parameters which are not assigned are highlighted with a green area. Parameters not highlighted are not available for mapping. It is possible to browse the entire interface in this mode to select and manage any parameter for mapping.
- To map or edit a parameter mapping, click directly on the parameter to access the mapping screen for that parameter.

- Click on the “TABLE” button in the top header to view the list of all parameters, their mapping status and to manage the sound engine parameters that have a direct effect on playability results with different controller types.

- Click on “Templates” for quickly loading MIDI Controller presets and configurations, whether they are Factory presets or user-defined settings.

- Click on the “X” button in the top header to exit from Controller Mapping mode.

Mapping Screen

Assigned parameter status

- **Back**: goes back to the previous screen
- **CURVE**: show the MIDI remapping curve for the selected mapping
- **UNASSIGN**: removes the current mapping and goes back to MIDI Learn mode
- **LEARN**: turns ON/OFF the MIDI LEARN to edit or remap the current parameter
- **X**: close the mapping screen and turn off the MIDI Mapping Mode
- **Assignment** section:
 - **Message**: MIDI message type:
 - CC: Control Change (1 byte value).
 - CC-HIRES: two coupled Control Change messages, MSB and LSB.
 - AT: Aftertouch (1 byte value).
 - NRPN: Non-Registered Parameter Number.
 - **Channel**: change which MIDI channel this controller will be affected by, from 1 to 16, or ANY.
 - **CC# MSB**: available only for Message = CC, CC-HIRES, NRPN:
 - if Message = CC, MSB is the CC number.
 - if Message = CC-HIRES, MSB is the Most Significant Byte of the two-byte hi-resolution message, from CC0 to CC31.
 - if Message = NRPN, MSB is the Most Significant Byte of the two-byte NRPN message.
 - **CC# LSB**: available only for Message = CC-HIRES, NRPN:
 - if Message = CC-HIRES, LSB is the Least Significant Byte of the two-byte hi-resolution message, from CC32 to CC63.
 - if Message = NRPN, LSB is the Least Significant Byte of the two-byte NRPN message.

NOTE:
- **CC means “Control Change”, it is a standard MIDI message used to control a wide variety of functions in a synthesizer or software instrument. The value of a CC is represented by a 7-bit byte, allowing a total of 128 values of resolution.**
• **AT** means “Aftertouch”. Some MIDI devices have the ability to sense the amount of pressure which is being applied to the keys or the touch surface while they are depressed. This pressure information, commonly called “Aftertouch”, may be used to control some aspects of the sound produced by a synthesizer or software instrument. AT is a standard 7-bit MIDI message, allowing a total of 128 values of resolution.

• **CC-HIRES** messages are a combination of two CC messages coupled together, thus providing a resolution of 14-bit, i.e. 16384 levels, for the represente values.

• **NRPN**, i.e. “Non-Registered Parameter Number”, extends the number of controllers available via MIDI. They are typically used to send parameter data to a synthesizer and software instruments in order to edit sound patches or other data, providing a resolution of 14-bit, i.e. 16384 levels, for the represente values.

• **MSB** means “Most Significant Byte”. For CC and AT messages, it is the only byte representing the control value. For CC-HIRES and NRPN messages, it is the most significant part of the two-byte message.

• **LSB** means “Least Significant Byte” and is only for CC-HIRES and NRPN messages. It is the least significant part of the two-byte message.

For more details on what CC, NRPN, MSB, LSB, please refer to MIDI specifications at https://midi.org

• **CURVE**: click on the button to show the mapping curve. The curve can be used to adjust the controller-to-parameter behavior with:
 - **Input Min** (left arrow): the minimum threshold on the controller input value. Values below this value will produce the “Out Min” value (or the “Out Max” value, if the curve is “inverted”).
 - **Input Max** (right arrow): the maximum threshold on the controller input value. Values above this value will produce the “Out Max” value (or the “Out Min” value, if the curve is “inverted”).
 - **Output Min** (bottom arrow): the minimum output value.
 - **Output Max** (upper arrow): the maximum output value.
 - **Enable Curve**: turn on / off the remapping function.
 - **Bipolar Curve**: useful for “bipolar” controls, i.e. where 64 is considered the “zero” of the controller. The parameter of the remapping curve are referred to just one side and the applied to the “negative”, antisymmetric side
○ **Shape**: controls the shape of the remapping curve (be aware, small changes can produce high variations, depending on the Symmetry parameter).

○ **Symmetry**: controls the symmetry of the remapping curve.
Unassigned parameter status
Any click on an unassigned parameter goes to this screen.

![Screen with MIDI Learn feature]

MIDI Learn
If “LEARN” is active, SWAM automatically listens for MIDI input messages while in LEARN MODE. Move the controller you want to connect to automatically complete the mapping.

The area “Controlled by” will be automatically filled in by MIDI Learn but can still be edited by manual input as well.

![Screen showing MIDI Learn feature]
The list of values of the “Message” parameter can be accessed with a long press gesture (click & hold).
MIDI Inputs quick access

For the Standalone version, a quick access to the MIDI input devices is available from the MIDI Mapping by clicking on the “INPUTS” icon.

Note: the MIDI Inputs panel shows up automatically at startup, if no MIDI Input has been selected before or if any previous connection has not been found.
MIDI Mapping Templates

It is possible to recall a predefined set of both pre-defined assignments for well known MIDI Controllers and User MIDI assignments through the TEMPLATES icon.

These entries allow us to recall predefined sets of assignments without impacting on the Sound parameters. This is useful when switching between different physical MIDI controllers without losing the timbre and sound behavior obtained acting on the Sound parameters.

A list of Factory Templates for the most known MIDI controllers is provided.
MIDI Mapping Table

The “MIDI Mapping Table”, available clicking on the MIDI mapping icon in the header, or from the Main Menu -> Controller Mapping -> MIDI Mapping & Quick Reset, screen recaps all the mapping settings, providing the big picture of all mappings.

This is the list of all the parameters that can be mapped individually by the process described above. Click on any row to create a new assignment, or to edit an existing assignment.

When editing the midi mapping, the system runs a check if the external control (for example a CC message) is already assigned to map another parameter. This check, in case of multiple assignments, shows a warning message displaying a yellow header in the parameter screen (“Mapping already used for other parameter(s)”) and a yellow icon on the MIDI Mapping Table summary screen.

This warning message is displayed to help avoid unintended multiple assignments, but multiple assignments are allowable and will function, should you have a need to make them. In that situation, simply disregard the warning.
Main menu

The Main Menu is available when clicking on the top-right icon.

- Preset Manager: open the Preset Management window.

- Reset:
 - Initialize: reset sound engine parameters
 - Advanced:
 - Reload “current preset”: reload the current selected preset, losing all changes made from the latest
 - Sound Engine: reset or load sound engine parameters
- MIDI Mapping: reset or load MIDI mapping settings
- Micro Tuning: reset or load micro tuning settings
- Room Simulator: reset or load room simulator parameters

Controller Mapping:
- Assign & Learn: open MIDI mapping management section
- MIDI Mapping & Quick Reset: open MIDI parameters list & Quick Reset
- Import: controller mapping from file

Parameter Lock:
- Sound Engine Parameters: freeze the sound when browsing your Presets
- External Controller Mapping: keep the same MIDI Controller Mapping with different Presets
- Micro Tuning Settings: keep the same micro tuning settings with different Presets
- Room Simulator Settings: keep the same room simulator settings with different Presets

Import:
- Preset: load whole .swam preset file
- Sound Engine Parameters: load a sound settings
- MIDI Mapping: load MIDI mapping settings
- Micro Tuning: load micro tuning settings
- Room Simulator: load room simulator settings

Export:
- Preset: save the current instrument state as a .swam preset file
- Sound Engine Parameters: save only sound engine parameters settings
- MIDI Mapping: save only external controller settings
- Micro Tuning: save only micro tuning settings
- Room Simulator: save only room simulator settings
- Settings:
 - Audio: open the “Audio Setup” window (available for the Standalone App only).
 - MIDI: open the “MIDI Setup” window (available for the Standalone App only).
 - Options: shows a list of global settings for the application or plugin.
 - Accessibility: Settings and Keyboard Shortcuts
 - Window Size: show a small popup window that allows to set the GUI orientation and zoom factor.
 - Account & License: open the “Account & License” window.
 - About: open the “About” page, where it's possible to check the version and build number, access to the online resources and show the Credits.
Preset Management

SWAM presets are organized into four groups of parameters and settings: Sounds, MIDI Mapping, Micro Tuning, and Room. A preset is a container that can store different types of data, specifically:

- Sounds: Parameters of the sound engine.
- MIDI Mapping: How parameters are mapped through MIDI controllers.
- Micro Tuning: Management of the micro tuning engine.
- Room: Settings of the Ambient room simulator.

User presets can be added, edited, and deleted. Factory presets cannot be edited or deleted; any "Save As" action performed on a Factory preset generates a User preset.

Preset navigation and selection

To open the list of available presets, select the Preset name area in the header of the Main Window, or navigate to Main Menu -> Preset Manager.
Presets can be searched by typing keywords in the Search area and can also be filtered by type: Sound, MIDI Mapping, Micro Tuning, or Room.

To select a preset, click on the desired item in the list, or use the keyboard accessibility commands if a screen reader is active.

For details on preset compatibility across different product releases, please refer to the Backward compatibility with previous versions; Legacy Reverb mode explained section.

Saving a User Preset

There are two methods to save a User preset:

1. **Save As**: This option allows you to create a new User preset based on the current settings of an existing preset, including Factory presets. To use this option:
 ○ Select the desired preset.
 ○ Modify the parameters as needed.
 ○ Click the "Save As" button.
 ○ Select one or more groups to include in the new preset: Sound, MIDI, Micro Tuning, Room.
 ○ Enter a name for the new User preset and save it. The new preset will now appear in the list of User presets.

2. **Duplicate**: This option creates an exact copy of the selected preset, which can then be modified. To use this option:
 ○ Select the preset you want to duplicate.
 ○ Click on the contextual menu (represented by the "...") icon.
 ○ Click the "Duplicate" button.
 ○ The duplicated preset will now appear in the list of User presets, you can then rename and edit as needed.
Editing and Exporting Presets

In the preset list, the contextual menu (represented by the "..." icon) provides additional options. Note that the "Edit" and "Export" options are available only for the currently selected preset. Therefore, it is possible to modify and export only the preset that is currently selected.

To edit a preset:

- Select the preset you want to modify.
- Click the "..." icon next to the preset.
- Choose Edit" from the contextual menu.
- On the next panel you can rename the preset as well as select the parameter groups you want to store and include in the current preset (sound engine, midi mapping, micro tuning and room simulator).
To export a preset:

- Select the preset you want to export.
- Click the "..." icon next to the preset.
- Choose "Export" from the contextual menu.

We also provide "templates" that allow you to reset a subset of parameters without losing your global state. For example, you can switch from the default Seaboard mapping to the default Wind controller mapping without losing your sound configuration.

Presets can be recalled either in their entirety or partially. Partial recall is done through templates, which allow loading data from the MIDI Mapping, Micro Tuning, and Room groups without affecting the sound settings. Templates are also contextually available in their respective areas of interest.

Default startup Preset and other options

Any preset can be selected to become the “default” one, i.e., the one loaded at startup. To do this, click on the "..." contextual menu next to the preset name and choose “Set as default.”

In addition to setting a preset as default, the contextual menu provides several other options:

- **Edit**: Modify the currently selected preset.
- **Export**: Export the currently selected preset.
- **Delete**: Remove a User preset if necessary. Note that this option is only available for User presets and not for Factory presets.
To summarize, the contextual menu allows you to:

- Set a preset as the default.
- Edit the currently selected preset.
- Export the currently selected preset.
- Delete a User preset.

These options make it easy to manage your presets efficiently, ensuring you have quick access to your preferred settings and the ability to customize and organize your presets as needed.
Parameter Lock

The “Parameter Lock” feature allows you to switch presets without affecting the category of parameters that is locked.

The Parameters Lock function is available with a long press on the Preset name area, or from Main Menu -> Parameters Lock.

- Select “Sound Engine Parameters” if you want to freeze the sound when browsing your presets.
- Select “External Controller Mapping” if you want to experiment with different presets, keeping the same MIDI controller mapping. Useful if you want to change sound but keep playing with your MIDI controller.
Select “Micro Tuning Settings” if you want to switch presets without affecting the micro tuning settings.

Select “Room Simulator Settings” if you want to switch presets without affecting the room simulator settings.

Settings

Audio Settings

The Audio Settings page is available for Standalone version only, and allows to select the proper Audio device, Output port, Active channels, Sample Rate and Buffer Size.

For real time playing, a combination of Buffer Size and Sample Rate should provide a maximum latency of about 10 ms.
MIDI Settings

The MIDI Settings page is available for Standalone version only and allows you to select one or more MIDI devices to control the instrument.

It’s also possible to use a Bluetooth MIDI device by selecting “Bluetooth MIDI”.

Once you have correctly selected your MIDI controller(s), be sure that suitable MIDI mapping has been configured, eventually through MIDI Templates.
Account & License

The Account & License shows the user currently logged in.

- Manage account: opens the Audio Modeling Customer Portal in a Web Browser
- Log out: logs the user out from the application
Options

- **Disable screensaver**: avoid screensaver activation when the App is open
- **Enable virtual MIDI ports** (macOS only): enable an Input and Output virtual MIDI port to control the instrument from an external App, or use the SWAM App to control another music App
- **Enable scroll wheel for horizontal sliders**: allow the use of the scroll wheel for changing slider values
- **Middle C4**: set octave notation so that Middle C is C4, corresponding to MIDI note number 60. If deselected, Middle C is C3.
- **High Quality Graphics**: quality level of User Interface details, like shadows and gradients. Turn off for lower CPU usage
Global Settings

Common / global settings for all products are managed from the Audio Modeling Software Center application. Click on the “…” menu and select the “General” option.

These settings apply to all installed SWAM products

- **Enable OpenGL Render**: when selected, render the graphics of SWAM instruments.
- **“Expression received” check at startup**: when selected, warns the user to check the controller mapped to the Expression parameter if a note is received before an Expression event (for Desktop version only)
- **Port Number**: (OSC Settings) used for the intercommunication of SWAM String Sections instances via Open Sound Control (OSC) UDP network messages on port 9001. You can change the port number and select a port from 5000 to 9999.
- **Multicast IP Address**: (OSC Settings) used for the intercommunication of SWAM String Sections instances via Open Sound Control (OSC) exclusively on 224.0.0.173 IP address.
Local Network Permission

NOTE: providing local network permission to your DAW or standalone SWAM Solo Woodwinds instances is mandatory to allow proper communication between SWAM instruments.

If you Firewall protection is enabled, you should see the following alert message:

macOS:

![macOS alert message](image)

Windows:

![Windows alert message](image)

If you have denied network permission, you can re-enable it in the operating system control panel.

macOS
System Settings ... -> Network -> Firewall -> Options …

and select “Allow incoming connections” for each SWAM instruments

Windows
Settings -> Privacy & security -> Windows Security -> Firewall & network protection ->
Allow an app through firewall

and select “Allow another app…” for add SWAM instruments
Keyboard shortcuts are not only a powerful tool for expert users but also an essential aid for blind or visually impaired users, providing direct access to functionalities. We have carefully designed these shortcuts to be intuitive and easy to remember, ensuring that all users can navigate and utilize our software efficiently. You can find and review all the available keyboard shortcuts in the Accessibility page.
About

The About page shows the current version and build number, as well as a few other options:

- **Version**: the current version and build number of the App. On Desktop, click on “Version” to open the Customer Portal and check for updates.

- **SWAM Website**: opens the SWAM section of the Audio Modeling website in a Web Browser.

- **Manual**: opens the online User Manual page in a Web Browser.

- **Support**: opens the Support Center page in a Web Browser.

- **Credits**: shows the credits page.
iOS

IMPORTANT NOTE: the current version of SWAM Solo Woodwinds Apps for iOS is still v3.7.3. The Ambiente room simulator, the Search page, and the new Preset management system will be available with the next update.

SWAM apps for iOS are available for iPad and iPhone. Both of those versions share the same engine and GUI elements as the desktop versions, with a few exceptions to adapt the user experience to the specifics of the devices.

- A few advanced parameters are unavailable (locked) on iPad and iPhone. However, desktop presets that include changes to these parameters can be imported to iOS without problem.
- iPad and iPhone offer on-screen, touch-based playing surfaces.
- iPhone has a different layout, but is consistent with the desktop and iPad versions: the same graphical elements and controls are reorganized to maximize the experience on a smaller screen.

List of locked parameters on iOS version

Currently, the following parameters are “locked” on both iPad and iPhone versions:

- Chromatic
- Legato Mode
- Overblow Thresh
- Harmonic Structure
- Formant
- Modal Res. Gain
- Random Dynamic
- Dynamic Harmonic (only for Saxophones, Double Reeds and Clarinets)
- Flutter (only for Saxophones, Double Reeds and Clarinets)
- Pipe Split (only for Flutes)
- Dynamic Pitch
- Attack To Sustain
- Auto Expression
- Vibr. Rand. Rate
- Panpot Type
- Harmonic Gain

Unlocking through In-App Purchase will be provided in future.
iPad

The GUI on the iPadOS version is identical to that of the desktop version. In addition, you will find a “PLAY” icon that accesses a dedicated, on-screen, touch playing surface.

On-Screen Playing Surface

The on-screen playing surface has the following purposes:

- Provide an onboard screen keyboard to perform at basic level without using any external controller
- Provide a visual feedback representation of the sound evolution (Dynamic Envelope)
- Provide direct controls of the most useful performance parameters (Expression, mute selection, control faders)
NOTE: To record and playback on a DAW what has been played on the On-screen playing surface, the “SWAM On-Screen Keyboard” MIDI Mapping Templates must be selected. (see the MIDI Mapping Templates section).

The dynamic areas can be selected just by tapping on the tab name: Control, Instrument, Dynamic Envelope.

Controls

This view provides faders and buttons that are very handy in live performance for tweaking the sound in real time, or adding subtle expressive details, when needed. Play and tweak in real time using the onboard keyboard, or use them as an extra control surface when playing with an external controller.
Instrument

This view shows the instrument selector. Use the arrows to select different instrument timbres.
Dynamic Envelope

This view shows how the sound evolves in real time. The more you change the Expression setting and other parameters, the more interestingly and expressively a SWAM instrument plays. Adjust the Expression setting to create nuance in the sound; use the Dynamic Envelope for visual feedback.
On-Screen Keyboard Setup

The keyboard has a toolbar with dedicated controls to:

- Shift the pitch by octave (Octave - and Octave + buttons)
- Manage the keyboard size: Select a smaller size to fit more keys on the screen/
 - Small (show 1 octave/13 keys)
 - Medium (show 1.5 octaves/18 keys)
 - Large (show 2 octaves/25 keys)
- Scroll the keyboard: Drag the ribbon to adjust the starting point of the keyboard.
- X and Y axis (direction) assignment: Configure modulation behavior for finger movement along the horizontal and vertical axes.

X: Pitch Bend Control Along the X Axis.

Tap on the “X” to show pitch bend range or unassign pitch bend control.
Y: Parameter Control Along the Y Axis

Tap on the “Y” to change the parameter assignment for a Y-axis gesture (by default assigned to Vibrato Depth), and to check what MIDI control is mapped to the parameter. A shortcut to the MIDI Mapping page is provided to make it easy to change the MIDI mapping for the controlled parameter. This is useful when using the control surface for recording MIDI on a DAW, or controlling an external instrument.
iPhone

Keep the iPhone in portrait orientation for editing any parameter or configuration, rotate to landscape orientation to play the instrument using the on-screen surface.

Getting Started

To get started, be sure to check the Audio and MIDI settings, especially if you are using an external audio device or external MIDI controller.

Audio settings are under Main … (“three dots”) menu -> Settings -> Audio. Check that the Active Output Channels, Sample Rate and Buffer Size are correctly selected.

MIDI settings are under Main … (“three dots”) menu -> Settings -> MIDI. Select the MIDI port corresponding to the MIDI controller you are using to play the instrument.
Select the MIDI mapping preset that best matches your MIDI controller. This is done from the MIDI Preset List icon on the Home page, or under Main … (“three dots”) menu -> Controller Mapping -> MIDI Mapping & Quick Reset -> PRESETS.

Finally, load a Sound preset from the list, selecting the “Sound Preset List” icon.
Editing

Portrait orientation is most suitable for editing the instrument, tweaking the sound, and performing advanced settings.

The … (“three dots”) menu on the top-right corner is the same as in the desktop and iPad versions. Refer to the “Main Menu” paragraph for details.

The “MIDI Preset List” icon \(\text{\includegraphics{midi_preset_icon.png}} \) gives you quick access to MIDI presets for a plug & play mapping of several external MIDI controllers.

The “Sound Preset List” icon \(\text{\includegraphics{sound_preset_icon.png}} \) is a shortcut to Sound presets selection and management.

On the iPhone, the Main Window has been split into five sections: Home, Sound, Control, Master and Edit. Use the navigation icons on the footer to reach the sections. Refer to the Main Window section and following chapters for details.
On-screen playing surface

Be sure to select the “SWAM On-Screen Keyboard” entry from the list of MIDI presets, then rotate the iPhone to landscape orientation to access the on-screen playing surface.

Controls and features are identical to the iPad version. Please refer to the earlier iPad section for a detailed description.

Controls
Quick access menu

A … (“three dots”) menu is available in the top right corner for quick access to sound parameter initialization, and sound and microtuning preset recall, and MIDI mapping selection.
Key Switches

Depending on the “KS Octave” parameter, Key Switches can be positioned beginning at any octave from C-1 to C2, or they can be disabled.

By default, the Key Switches are positioned starting from C1 (MIDI note 24), where C3 (MIDI note 60) = Middle C. You can change the MIDI channel from which Key Switches receive note events through the “KS Channel” setting. This can be useful when controlling Key Switches from a separate keyboard.

The Key Switch state depends on the Note On velocity. The velocity curve can be adjusted using the “KS Velocity Remap” parameter.

The Key Switches provided are:

- C triggers a short fall.
- C# switches between two legato modes: Gliss and Expr;
- D triggers a “squeak” (a short overblow on attack) or a continuous overblow, depending on the timing and velocity:
 - A low KS velocity triggers a squeak (if the KS is pressed before note on).
 - A higher KS velocity plays a continuous overblow (if the KS is pressed before note on).
- D# behaves like D in latch mode.
- E triggers the Alternate Fingering (momentary)

Flutes only:

- F behaves like E in latch mode.
Instrument ranges

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Middle C = C3</th>
<th>Middle C = C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWAM Clarinet</td>
<td>C2 - B5</td>
<td>C3 - B6</td>
</tr>
<tr>
<td>SWAM Bass Clarinet</td>
<td>Ab0 - B4</td>
<td>Ab1 - B5</td>
</tr>
<tr>
<td>SWAM Soprano Sax</td>
<td>F2 - Bb5</td>
<td>F3 - Bb6</td>
</tr>
<tr>
<td>SWAM Alto Sax</td>
<td>Bb1 - Ab5</td>
<td>Bb2 - Ab6</td>
</tr>
<tr>
<td>SWAM Tenor Sax</td>
<td>F1 - Gb5</td>
<td>F2 - Gb6</td>
</tr>
<tr>
<td>SWAM Baritone Sax</td>
<td>A0 - E5</td>
<td>A1 - E6</td>
</tr>
<tr>
<td>SWAM Oboe</td>
<td>G2 - A5</td>
<td>G3 - A6</td>
</tr>
<tr>
<td>SWAM English Horn</td>
<td>C#2 - F#5</td>
<td>C#3 - F#6</td>
</tr>
<tr>
<td>SWAM Bassoon</td>
<td>Ab0 - G4</td>
<td>Ab1 - G5</td>
</tr>
<tr>
<td>SWAM Contrabassoon</td>
<td>Ab-1 - Ab3</td>
<td>Ab0 - Ab4</td>
</tr>
<tr>
<td>SWAM Piccolo</td>
<td>B3 - C7</td>
<td>B4 - C8</td>
</tr>
<tr>
<td>SWAM Flute</td>
<td>A#2 - C#6</td>
<td>A#3 - C#7</td>
</tr>
<tr>
<td>SWAM Alto Flute</td>
<td>F2 - A5</td>
<td>F3 - A6</td>
</tr>
<tr>
<td>SWAM Bass Flute</td>
<td>A1 - D#5</td>
<td>A2 - D#6</td>
</tr>
</tbody>
</table>

Notes:

- Ranges are provided in Concert (or Natural) pitch.
- Middle C can be switched from C3 to C4 in Main Menu -> Settings -> Options.
- SWAM Piccolo is transposed +12 semitones by default. Set the Transpose parameter to 0 to play with real pitch.
- SWAM Bass Clarinet, SWAM Tenor Sax, SWAM Baritone Sax, SWAM Bassoon, SWAM Contrabassoon, SWAM Bass Flute are transposed -12 semitones by default. Set the Transpose parameter to 0 to play with real pitch.
Tips and Troubleshooting

For comprehensive information, FAQs, and more detailed articles, please refer to our Knowledge Base at kb.audiomodeling.com.

No sound

The three most common causes for not getting any sound from a SWAM instrument are:

1. The audio device or audio output may not be correctly assigned. In the Standalone app, navigate to Main Menu -> Settings -> Audio, and select the proper audio device and output channels. If you are using a DAW or host, consult the user manual of the host application.

2. The MIDI device may not be correctly selected. In the Standalone app, navigate to Main Menu -> Settings -> MIDI, and select the proper MIDI device. If you are using a DAW or host, consult the user manual of the hosting application.

3. The Expression parameter may not have been moved, automated, or controlled by an external MIDI device since the instrument was instantiated.

Ours are expressive instruments. Unlike standard sample libraries, our instruments do not work until the Expression control is changed by an Expression pedal, Breath Controller, wheel, knob, slider, Wind Controller, Seaboard, LinnStrument, Touché, mobile App capable of sending MIDI data, or other MIDI CC11 source.

Can a saxophone emit a sound without blowing into it? Can a violin emit a sound without moving the bow?

Please watch this introductory playlist:
https://youtube.com/playlist?list=PLT7qu1yXoV4HpBDsrDKbVjJKOhtpsNAI

We provide Factory presets for several MIDI controllers: click "MIDI", click "PRESETS", and choose a preset from the list.

The default mapping for the Expression control at startup is the MIDI CC11, which is typically assigned to a keyboard Expression pedal.

The Expression assignment can be customized to match your controller: click "MIDI", click on the Expression Slider, and input the MIDI CC number.

For MIDI keyboards not equipped with an Expression pedal, a good start often is to map Expression to CC1 (Mod Wheel) and Vibrato Depth to AfterTouch (AT).
You can use the "Learn" button and move your controller. In this mode, the instrument recognizes the first incoming CC number and automatically assigns it to the Expression setting.

Even without a physical controller, on a DAW or sequencer you need to draw expression curves (or envelopes) or automation. Please refer to the user manual of your DAW in order to know how to provide MIDI CC curves or automation.

You can find "Getting Started" for most DAWs on our knowledge base https://kb.audiomodeling.com/en/c/how-to

Understanding Ambiente

What is Ambiente and why should I use it?

Ambiente is a sophisticated room simulator initially developed as an essential component of SWAM String Sections. Unlike standard reverb effects, Ambiente positions instruments within a 3D virtual space, simulating the reflections of sound waves through geometric calculations. This creates a more realistic spatial experience.

Why use Ambiente if you already have effects and reverbs?

Ambiente provides more immersive and precise spatial positioning than traditional reverb effects. It enhances the natural and authentic sound of SWAM Solo Strings, SWAM Solo Woodwinds, and SWAM Solo Brass, significantly elevating the realism and coherence of soundscapes.

Can I move just one section to a different room?

No, the SWAM String Sections are designed to function as a unified entity within the same room environment to maintain consistency and avoid paradoxical situations.

What is the purpose of having multiple rooms in the Ambiente room simulator?

The Ambiente room simulator offers the flexibility to choose and shape sounds in different rooms, similarly to how different recording studios use various acoustic environments. Larger rooms can be used for string sections to produce a broad, reverberant sound, while smaller rooms can be used for solo instruments to create a more intimate sound.

Why do SWAM instruments need to use the local network?

With the introduction of SWAM String Sections and the 3.8.0 update for SWAM Solo Instruments, all products now feature the Ambiente room simulator. This simulator communicates with other plugin instances across the local network, allowing synchronized
operations and settings across all instances, saving time, reducing errors, and ensuring consistent results.

“Communication between instances failed” warning message

If you encounter a communication error between SWAM plugin instances, it may be due to insufficient network permissions. This issue can typically be resolved by ensuring that multicast communication is enabled for SWAM instances. For instructions on how to set local network permissions, please refer to the Local Network Permission section in this manual.

Issues when opening Logic Pro projects or templates

When opening Logic Pro projects or templates that have been saved without MIDI data, if the "Only load plug-ins needed for project playback" option is enabled in your project settings (File -> Project Settings), SWAM instruments in Ambiente will not be displayed until you open each plugin instance. This occurs because Logic Pro disables plugins on tracks without MIDI data, preventing Ambiente from communicating with the other SWAM instances until each plugin is selected and enabled.

We strongly recommend deselecting the "Only load plug-ins needed for project playback" option.

What are SWAM Templates?
Templates replace "Quick Reset" and "MIDI Preset" to clarify the difference between applying/resetting settings and recalling a complete preset. In the SWAM ecosystem, "Presets" mainly refers to the synthesis engine and sound engine data, combined with other settings like MIDI Mapping, Micro Tuning, and Room Simulator configurations.

When applying a template, you modify specific system parts, such as MIDI Mapping or Room Simulator settings, without altering the sound. This terminology shift helps users better understand and utilize the different functionalities within the SWAM ecosystem.

Why is it called the SWAM Ecosystem now?

With the introduction of SWAM String Sections and update 3.8.0 for SWAM Solo Instruments, all products now include the Ambiente room simulator. This integration allows instruments to interact within the same virtual room, making it possible to build a cohesive orchestral sound.
Backward compatibility with previous versions: Legacy Reverb mode explained

Ensuring compatibility for DAW projects

When updating to SWAM v3.8.0, DAW projects saved with versions 3.7.3 or earlier will automatically open with Legacy Reverb Mode enabled, deactivating the new Ambiente room simulator to ensure consistent sound results. This allows users to continue their work without unexpected changes in audio output.

Preset import and Legacy Reverb mode notification

Presets saved in version 3.7.3 or earlier can be imported into v3.8.0, and the default setting will apply the new room simulator. Users will be notified of this change, with the option to switch back to Legacy Reverb mode if the original sound is preferred.

Compatibility of presets between versions

- **Forward Compatibility:** Presets created in version 3.7.3 or earlier are fully compatible with v3.8.0.
- **Backward Compatibility:** Presets saved in version 3.8.0 are not guaranteed to be compatible with earlier versions and may result in errors.

Transition information for new Ambiente room simulator

1. **Standalone Mode:** When opening the new version 3.8.0 in standalone mode, instruments will start with the room simulator active. A popup will notify users that the instrument now has an Ambiente room simulator effect instead of the basic reverb from previous versions.

2. **DAW Projects:** When opening a DAW project using v3.7.3 instruments after updating to v3.8.0, instruments will start in Legacy Reverb mode to preserve the project’s sound. It is recommended to manually switch to the room simulator by deactivating Legacy Reverb mode.

3. **Importing Presets:** When importing a preset saved from version 3.7.3 or earlier, the instrument will start with the room simulator active, and a popup will notify the user of this change. Users can switch to Legacy Reverb mode if desired.

4. **Loading Presets:** When loading a Factory or User preset in v3.8.0 that uses a different room setting than the current one, the instrument will ask if you want to overwrite the current room or keep the existing settings.
5. **DAW Sessions**: When loading a new instrument with a different room setting than the current one in a DAW session, the instrument will adopt the current room setting.

6. **Loading Room Templates**: When loading a Room Template in a DAW session, the current room will be replaced with the template room setting.

Best practices for adding multiple solo instruments of the same type

When adding multiple solo instruments of the same type, it's essential to address potential phasing issues, especially when these instruments play in unison or occupy the same spatial position. Here are some best practices:

Understanding phasing issues

Phasing occurs when identical instruments play together, causing interference patterns. To mitigate these issues, SWAM instruments offer several solutions.

Utilizing the Ambiente room simulator

Ensure instruments do not overlap in the same position within the room simulator to avoid phasing issues. Carefully place each instrument in a unique position for a balanced and natural sound.

Customizing instrument characteristics

- **Different Instrument Bodies for Solo Strings**: Select different instrument bodies (e.g., Cremona, Firenze) to diversify sound characteristics.

- **Unison Anti-Phasing for Solo Brass**: Adjust the Unison Anti-Phasing parameter to minimize phasing problems.

- **Different Instruments for Solo Woodwinds**: Choose different woodwind sounds to avoid phase-related distortions.

- **Using Divisi for orchestral sections**: Employ the "divisi" technique to divide a section of instruments so they play different parts, reducing the risk of phasing issues.
Why aren’t SWAM Solo Woodwinds v3.8.0 available for iOS?

The porting process

Porting software to iOS, especially for significant releases like v3.8.0, is complex and time-consuming. Each platform has unique requirements and constraints, necessitating significant development effort.

Platform specific testing

The distinct characteristics of the iOS platform require specialized testing to ensure compatibility and performance. This involves rigorous testing procedures to maintain high-quality standards.

Commitment to Quality

We ensure that each update undergoes extensive testing and optimization to meet our standards. We are working diligently to bring these updates to iOS as soon as possible.

Expected availability

We are actively working on the necessary adaptations to make SWAM Solo Strings v3.8.0 available for iOS at the earliest possible time. We appreciate your patience and understanding.
Technical Support

Before requesting technical support, please make sure you have carefully read the User Manual and the FAQs on our Support Center at audiomodeling.com/support.

There, you’ll quickly find appropriate answers to most questions.

Should you still need technical support, please contact the SWAM support team at support@audiomodeling.com or open a Ticket through our Support Center.

Note: Please ensure you enter your email address carefully — it’s not possible for us to reply to an incorrect email address.

When requesting technical support, please don’t forget to provide as much system information as possible, including your type of computer, OS, audio interface, host application, software version, etc. If the problem can be replicated, a MIDI and/or an audio file is usually very helpful.

In order to provide effective and quick support, please include a reference to either the user account, order number or one of the License Keys.