SWAM Solo Brass
User Manual
v3.8.0

Trumpets, Trombones, Horns & Tubas
Table Of Contents

Before you start 5
Licensing 7
 macOS and Windows 7
 iOS 7
Specifications 8
 Required space after installation 8
Installation 9
 macOS and Windows 9
 Installation paths 10
 iOS 10
Hardware Requirements 11
 CPU load 11
 Audio interface (sound card) 11
 MIDI devices 11
Software Requirements 13
 macOS and Windows 13
 iOS 13
Using an appropriate range of Expression 14
Introduction 15
 Interaction with the product 19
 Main window 20
 Instrument parameters 20
 Main controls 21
 Audio section 23
 Header section 24
Expressivity 26
Play Modes 28
Timbre 30
 Source 30
 Capture 32
Pitch 33
 Master Tuning 33
 Microtuning 34
Advanced 41
 Instrument 41
Effects 48
Room & Position 48
“Communication between instances failed” warning message 102
Issues when opening Logic Pro projects or templates 102
What are SWAM Templates? 103
Why is it called the SWAM Ecosystem now? 103
Backward compatibility with previous versions: Legacy Reverb mode explained 104
Best practices for adding multiple solo instruments of the same type 105
Why aren't SWAM Solo Brass v3.8.0 available for iOS? 106
Technical Support 107
Before you start

Although these instruments are intuitive and easy to play “out-of-the-box”, getting excellent results requires a certain amount of practice and experience. Please read this user manual carefully. It contains very important information that will help you achieve the best results in as short a time as possible. In addition, you can listen to the demos on the Audio Modeling website at audiomodeling.com/media, and on the Audio Modeling YouTube channel at youtube.com/c/AudioModeling.

The latest version of all SWAM manuals can be found at audiomodeling.com/manuals. Release Notes are available at audiomodeling.com/support/release-notes.

More information, tips, FAQ and Troubleshooting at kb.audiomodeling.com.

All SWAM instruments are designed to be PLAYED in real time by shaping the sound like a real instrumentalist would.

The Desktop version will function on any modern computer (see Specifications), using any host application which supports VST, VST3, Audio Units or AAX plug-in formats, or running as a standalone application. An example host software could be a sequencer or a Digital Audio Workstation (DAW) such as Camelot Pro, Ableton Live, Cubase, Logic, Pro Tools, LUNA, Reaper, Digital Performer, Studio One, etc.

The iOS version is currently available for both iPad and iPhone (see Specifications to check what OS version is supported). On this mobile platform, SWAM products come as Standalone, AUv3 plug-ins and Inter-App Audio (IAA) formats. Example host and DAW softwares are Camelot Pro, GarageBand, Logic Pro, Cubasis and AUM.

These instruments use Audio Modeling’s proprietary SWAM (Synchronous Wave Acoustic Modeling) technology conceived by Stefano Lucato. Combined with Physical Modeling, they provide exceptional playability and realism. The sound is not produced by playing back samples, using pre-recorded articulations; these are complex virtual instruments, capable of shaping almost any kind of articulation and phrasing in real time. They can be played using any MIDI device such as a keyboard, breath or wind controller.

Indeed, it is essential that the instruments are controlled using a suitably capable set of MIDI controllers, as described in this manual.

NOTE: As with a real musical instrument, SWAM instruments allow continuous movement across the full range of dynamics — from pp to ff — without producing any phasing artifacts.

To accomplish this, it’s necessary to use a suitable continuous physical MIDI controller such as an expression or volume pedal (usually CC11 or CC7 MIDI messages), a breath or wind...
controller (usually CC2 MIDI messages) or one of the many other expressive controllers on the market today.

WITHOUT SUCH A CONTROLLER, THE INSTRUMENT WILL NOT WORK WHEN PLAYED IN REALTIME. Instead, it will display the warning “Having Trouble with No Sound? It looks like you’re not sending an expression control message (default CC11) to your SWAM instrument”, with actions to select or map an external MIDI controller.

Other physical MIDI controllers, like sliders, knobs or a modulation wheel, can be used for this purpose, although they often do not provide the level of control required for optimal results. Please refer to other sections of this manual for further details.

When used for studio production, it’s necessary to provide either a MIDI Expression curve or Expression Automation.

Note: the MIDI note naming convention we use is based on Middle C = C3, corresponding to MIDI note number 60. It’s possible to switch to Middle C = C4 from the Options page.
Licensing

macOS and Windows

The License Key we provide can be activated on up to four computers at the same time. Refer to the Installation paragraph for instructions on how to authorize SWAM products.

To move an authorization to a different computer, please login to the Customer Portal at my.audiomodeling.com and delete it from the activations list of the corresponding License Key.

The full terms and conditions can be found in the End User License Agreement (EULA) provided with the product. Please refer to the “Installation Paths” paragraph of this user manual to locate the EULA on your system.

iOS

Licensing on iOS is managed by Apple. Please refer to AppStore and Apple terms and conditions.
Specifications

macOS 10.13 (High Sierra) – 14 (Sonoma) *

- Standalone, Audio Units, VST, VST3, AAX 64bit
- NKS (Native Instruments Komplete Kontrol) - VST3 only

Windows 10, Windows 11

- Standalone, VST, VST3, AAX 64bit
- NKS (Native Instruments Komplete Kontrol) - VST3 only

iOS 11 – 17

- Standalone, AUv3, IAA

* Apple Silicon architecture supported natively

All SWAM apps and plugins navigable by the native accessibility frameworks on macOS, Windows, iOS.

Required space after installation

macOS

Each product installer is 240 MB. The required space is 32 MB per single plugin format plus 16 MB for shared resources and assets. This results in a total ranging from 176 MB to 816 MB for each product (5 instruments of either SWAM Trumpets, SWAM Trombones, or SWAM Horns & Tubas), and from 1 GB to 2.4 GB for the complete Solo Brass bundle (3 products, 15 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 30 MB for each instrument instance.

Windows

Each product installer is 150 MB. The required space is 16 MB per single plugin format plus 16 MB for shared resources and assets. This results in a total ranging from 96 MB to 336 MB for each product (5 instruments of either SWAM Trumpets, SWAM Trombones, or SWAM Horns & Tubas), and from 288 MB to 1 GB for the complete Solo Brass bundle (3 products, 15 instruments). The total range depends on the number of plugin formats installed.

RAM occupancy: about 42 MB for each instrument instance.
Installation

macOS and Windows

Product Registration and Installation

1. login to our Customer Portal (https://my.audiomodeling.com); create a new account if you have never signed up;
2. select “Register a new product”;
3. type the Redeem Code provided, select “Next”;
4. the portal will send an email to you. Click the confirmation link on the email;
5. download, install and launch the “Audio Modeling Software Center”, available at https://audiomodeling.com/support/install-and-update
6. login with your credentials to download and authorize the products on your computer.

If you installed a previous version

The updates are managed through the Audio Modeling Software Center.

NOTE: the products can be activated “online” only, i.e. your computer must be connected to the Internet at the time of authorization. If you need to work offline, just connect to the Internet for the time required for the authorization, then disconnect once the authorization is complete.
Installation paths

macOS

- Standalone app, End User License Agreement, Uninstaller are located in the folder chosen in the Audio Modeling Software Center, by default: /Applications/Audio Modeling/(Product name)
- Audio Units plug-ins are located under: /Library/Audio/Plug-Ins/Components
- VST3 plug-ins are located under: /Library/Audio/Plug-Ins/VST3
- VST plug-ins are located under: /Library/Audio/Plug-Ins/VST
- AAX plug-ins are located under: /Library/Application Support/Avid/Audio/Plug-Ins
- Default presets and auxiliary resources are stored under: /Users/Shared/Audio Modeling/SWAMv3
- User presets are stored under: ~/Library/Audio Modeling/SWAMv3

Windows

- Standalone app, End User License Agreement, Uninstaller are located in the folder chosen in the Audio Modeling Software Center, by default: C:\Program Files\Audio Modeling\(Product name)
- VST3 plug-ins: the installation path is defined in the Audio Modeling Software Center, default: C:\Program Files\Common Files\VST3
- VST plug-ins: the installation path is defined in the Audio Modeling Software Center, default: C:\Program Files\VSTPlugins
- AAX plug-ins are located under: C:\Program Files\Common Files\Avid\Audio\Plug-Ins
- Default presets and auxiliary resources are stored under: C:\Users\Public\Documents\Audio Modeling\SWAMv3
- User presets are stored under: %AppData%\Audio Modeling\SWAMv3

iOS

Installation and updates are managed through the AppStore.
Hardware Requirements

CPU load

The realism and expressiveness of the SWAM instrument set can be CPU intensive. It therefore requires a modern computer with at least a 1.6 GHz Core 2 Duo CPU for a single instance of any SWAM instrument. Additional instances will require both a more powerful processor and a low-latency audio driver/device (e.g. ASIO), especially to play the instrument in real time.

Less powerful systems may also prove satisfactory, but may require larger buffer sizes, which incur higher latencies.

Note: This may not necessarily result in an actual problem for music production. Using the freeze feature or bouncing the single MIDI tracks to audio provides a useful remedy.

Audio interface (sound card)

A good quality audio interface with suitable low-latency drivers is required. On Windows, ASIO drivers are recommended. Suggested settings for buffer size at 44.1 or 48 kHz are 64, 128, 256, or 512 samples (larger buffers provide higher latency, but less CPU load). Onboard audio devices are often suitable on modern computers, iPad and iPhone.

NOTE: sample rate values lower than 44.1 kHz are not supported.

MIDI devices

SWAM instruments (like any other virtual instrument) can be successfully used without the need for any additional hardware by drawing the controller curves and programming the notes directly in the host sequencer. However, a much more “human” and interactive configuration is recommended, especially when playing in real time, using external MIDI devices: a MIDI keyboard with at least 5 octaves, mod wheel & pitch bend, connected to the computer via USB or an external MIDI interface, equipped with a set of physical continuous MIDI controllers (usually knobs or sliders) to control effects like bow pressure, bow position, tremolo, harmonics, etc.

Although the dynamics can be controlled by another physical controller (knob, slider, ribbon, XY-pad), a pedal is highly recommended. As an alternative, a breath controller, such as a Yamaha BC3, TECcontrol BC and BBC2, Photon by IMOXPLUS, or Hornberg Research HB1, can be used. Woodwind or Brass players may prefer to use a wind controller such as a Yamaha WX, YDS-120 or YDS-150, Akai EWI (USB, 4000S or 5000), Aodyo Sylphyo, EMEO, Roland Aerophone, Synthophone, EVI (Electronic Valve Instrument), NuRAD, WARBL, Travel
Sax, Robkoo R1 - all of them provide excellent results. MIDI Polyphonic Expression devices like the Seaboard, LUMI and Lightpad by ROLI, LinnStrument by Roger Linn Design, or the Instrument 1 by Artiphon are fully supported.

Alternative controllers include Neova Ring by Enhancia, Toucé and Osmose by Expressive E, Sensel Morph, Joué, and Leap Motion by Ultraleap.

Note: On EWI 4000s or similar please do not set the option to mix the pitch-bend or vibrato to breath sensor ("Pb" or "bo" options on EWI 4000s). This can produce unnatural vibrato behavior. SWAM engine applies the right behavioral models to the relationships between pitch and dynamics based on the physics of the instrument. These relationships are different for each musical instrument.
Software Requirements

macOS and Windows

Standalone

We provide a Standalone version of each instrument, please check the Installation Paths paragraph of this User Manual to locate the applications.

Plugins

A DAW (Digital Audio Workstation) or other host capable of running VST2.4, VST3, Audio Units or AAX plugins is needed to run the SWAM instruments. If you do not have a host application capable of running VST or AU plugins, you can install a free host application such as Camelot Free for desktop (camelotpro.com).

A list of compatible hosts and DAWs can be found on our Knowledge base: audiomodeling.com/support.

iOS

Standalone

We provide a Standalone App of each SWAM Solo Brass instrument.

Plugins

A DAW (Digital Audio Workstation) or other host capable of running SWAM Solo Brass instruments as AUv3 or IAA plugins is needed.

If you do not have a host application capable of running AUv3 plugins, you can get our Camelot Pro live performance host on the AppStore.
Using an appropriate range of Expression

This is an extremely important aspect for getting the optimal expressiveness and realism with virtual instruments.

All real physical instruments require a much greater degree of effort to achieve the highest possible dynamics for that instrument. This is not the case for most physical MIDI controllers; it is indeed very easy to push an expression pedal, or a slider, to the maximum and leave it there forever. Oddly enough, even breath and wind controllers tend to jump very easily to the highest dynamics (unless carefully set), so that the most expressive range (mp to mf) is seldom exploited. This results all too often in the virtual instrument being played in an excessive range of dynamics, leading unavoidably to a poor, unrealistic performance.

Please keep in mind that the key to expressiveness and realism is a proper use of dynamics. Always monitor the input expression value on the main display and adjust the dynamics accordingly. A useful trick is to set the overall monitoring volume fairly high. This automatically prevents any inclination toward over using the higher levels of dynamics.

The Expression slider on the main GUI becomes “hot”, i.e. with a red halo surrounding it, if the level of expression stays constantly above 75%. When you see such a red alert warning, please consider avoiding such extensive use of higher dynamics.

It’s also important to optimize the general volume of your loudspeakers/headphones at an average value of Expression. Too low an output level would easily induce the user to use high Expression levels, usually yielding excessively “biting” sounds.
Introduction

SWAM Solo Brass is a collection of solo brass instruments conceived and developed by Stefano Lucato and the Audio Modeling team. These instruments are based on Physical Modeling technology and do not make use of any samples.

SWAM Solo Brass collection includes fifteen brass instruments, grouped in three product families:

- **SWAM Trumpets:**
 - Flugelhorn (E♭), Flugelhorn, Trumpet, Trumpet (C), Piccolo Trumpet.

- **SWAM Trombones:**
 - Double Bass Trombone, Bass Trombone, Tenor Bass Trombone, Tenor Trombone, Alto Trombone.

- **SWAM Horns and Tubas:**
 - Bass Tuba, Tuba (E♭), Euphonium, French Horn (F), French Horn (B♭).

SWAM Solo Brass instruments come as a Standalone application, VST, VST3, Audio Units and AAX plugins for Desktop, and Standalone App, AUv3 and IAA plugins for iOS.

Any SWAM Solo Brass product can be set to emulate both Valves and Slide (i.e. Coulisse) instruments. Have you ever wanted to play a French Horn with a slide? With Physical Modeling that's possible! Of course, the default settings at startup set the instrument to its traditional configuration.

In addition to standard SWAM controls such as staccato / legato (with velocity- or CC-controlled portamento time), dynamic expression and vibrato depth and frequency, there are several additional parameters to control the instrument behavior which are specific to the brass instruments.
Each instrument has three “Pipe Gestures” for each “Pipe Model”:

<table>
<thead>
<tr>
<th>Valves</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Normal Valve (transitions emphasize overtones).</td>
<td></td>
</tr>
<tr>
<td>2. Half Valve Transitions.</td>
<td></td>
</tr>
<tr>
<td>3. Half Valve.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slide (i.e. Coulisse)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fixed Slide (transitions emphasize overtones).</td>
<td></td>
</tr>
<tr>
<td>2. Slide Follow Real (bend).</td>
<td></td>
</tr>
<tr>
<td>3. Slide Follow +/-7 (extended).</td>
<td></td>
</tr>
</tbody>
</table>

Pitch-bend

The pitch-bend controller modifies the emulated lip-tension, which adjusts the pitch of the generated tone, whilst notes control either the Valve combinations or Slide position, depending on the Pipe Model in use.

For example, if “Pipe Gesture” is set to “Fixed Slide”, a large variation of pitch-bend will produce a large pitch sweep within a fixed pipe (the typical “elephant” effect).

Note that the emulated brass player can achieve much wider pitch bend ranges than any physical player can!

Valve/Slide Speed

It is possible to control the speed of transition for Valves and Slide through the parameter “Valve/Slide Speed”. This time is measured in milliseconds.

One can also set the amount of Half Valve “contamination” during valve transitions using the parameter “Half Valve Amount”.

Finally, it is possible to control the Valve combinations and Slide position manually (of course, this requires much more knowledge of how the instruments behave) through the parameter “Pipe Selection”. By default this is set to “auto” and the correct Valve combination or Slide position is obtained from the current MIDI note.

Legato priority

On brass instruments it is possible to play the same note with different Valve combinations or Slide positions. If “Legato priority” is ON, the Physical Model will maintain the same combination or position as long as the target note is compatible with the currently selected position.
Pedal notes

On brass instruments, the first nominal note is one octave higher than the lowest possible note allowed by the full pipe length. Since valve combinations or slide positions are just 7, it’s not possible to play 12 semitones on the very lowest range. To do so, an additional valve is added to the model when the “Pedal Notes” switch is ON in order to allow the use of all notes in the lowest octave.

Timbre adjustments

It is possible to adjust timbre through a variety of parameters on the “Timbre” page: “Bell Resonance”, “Breath Noise”, “Dirtiness” and “Timbral Correction”, where it’s even possible to select and adjust the gain of up to harmonics of the produced sound.

“Dynamic Sens.” adjusts the amount that the Expression level changes the spectral character of the sound in the higher harmonics. The higher this parameter is set, the more “Brassy” the sound will be.

Mutes

Mutes and cups are represented within the instruments by physical models, rather than impulse response presets which means that you can tweak, build and reshape them to find the desired character!

On the Timbre page you can control the “Mute/Cup Size” and “Mute/Cup Tone”.

Vibrato

With these totally physically-modeled instruments it is possible to play three different vibrato styles by simply combining the Vibrato Amount (which is by default assigned to the ModWheel) and Expression:

- **Classical Vibrato:** use a low Vibrato Amount for the whole Expression range.
- **Jazzy Vibrato:** use a high Vibrato Amount during Expression diminuendo at the end of a note, just before release, for the low to mid note range.
- **Shake Vibrato:** use a high Vibrato Amount during high Expression for mid to high note range.

Note: you can select the vibrato maximum range acting on the “Vibrato Style” parameter available in the “Advanced” section.
Interaction with the product

You can control the parameters of SWAM instruments directly through the user interface (UI) using a mouse, finger on touch devices, or other pointing systems like Eye Trackers or OCR. Additionally, interaction is possible via Screen Reader, keyboard shortcuts, or MIDI for parameters that are mappable and effectively mapped. All SWAM products have been validated by visually impaired users for a high level of accessibility.

Parameters are graphically represented by knobs, sliders, button rows with all options explicitly listed, or toggle buttons. For toggle buttons, you can press and hold to get an explicit list of values.

These buttons also have a small graphical indication of the number of available options via hatching, with the selected value highlighted through a more pronounced mark.

The interface is designed for various uses on different screen sizes, devices, and operating systems. The Main “...” menu on the home screen acts as a guided wizard that provides access to almost all functions.

Next to each object, the contextual “...” menu offers access to the most important and contextual options, encouraging users to explore further.

System parameters are categorized on the home screen into different groups to make it easier for less experienced users or infrequent users to understand and get started. However, the experienced and frequent user has access to the Search button located at the top of the header. This tool provides at the same time an overview of all parameters and a search function to quickly find what is not immediately visible.
Main window

The main window shows the most important parameters, instrument monitors and animations.

Instrument parameters

All parameters have been grouped in six categories:

- **Expressivity**: parameters that allow the physical player’s expressivity to affect the instrument.
- **Play Modes**: parameters that act on the details of how the emulated player plays the instrument.
- **Timbre**: parameters that affect the instrument’s timbre.
- **Pitch**: Master Tuning, Pitch, Transposition and microtonal settings.
• **Advanced**: additional parameters, especially for expert users.

• **Room & Position / Effects**: if the Legacy Reverb mode parameter is set to OFF, “Room & Position” opens Ambiente, the virtual room and positioning environment; otherwise, it shows the parameters affecting the audio signal processing applied at the final stage.

The most common and important parameters are presented on the main GUI.

Main controls

- **Mute** (left/right arrows)
 - No Mute: there is no mute in the instrument’s bell.
 - Straight Mute: adds a straight mute into the instrument’s bell.
 - HarmWah Mute: adds a harm-wah mute in front of the instrument’s bell.
 - Cup Mute: adds a cup mute in front of the instrument’s bell.
 - Hand Mute: simulates a hand in front (or inside) the instrument’s bell.

 The HarmWah, CupWah and Hand Mutes can be controlled in real-time through the “Mute Control” parameter on the Expressivity page.

- **Mute Control**: controls the typical ‘wah’ effect when the Mute is set to HarmWah, CupWah or Hand Mute. This parameter can be controlled in real time from a MIDI device by mapping it to MIDI CC, After Touch or NRPN messages.
 Note: Mute Control has no effect when Mute is set to “No Mute” and “Straight Mute”.

- **Pipe Model** *(locked on iPad)*
 - Valves: the instrument model is controlled by Valves.
 - Slide: the instrument model is controlled by a Slide (aka Coulisse).

- **Pipe Gesture**
 The Pipe Gesture is selected by the Pipe Model switch, available on the main page or in the Play Modes page.
 - Valve:
 - Norm Valve: standard valve playing mode.
- **Half Valve Trans. (Half Valve Transitions):** standard valve playing mode, with half-valve transitions. This emulates a slow-moving transition between the valve states.

- **Half Valve:** half valve playing mode. This emulates the player not completely opening or closing the valves.
 - **Slide:**
 - **Fixed Slide:** fixed slide control during pitch-bend changes. Pitch is altered only by the player's lips, using a fixed slide position.
 - **SlideFlw Real (Slide-following, realistic):** realistic control of the slide during pitch-bend. The pitch of the player's lips is tuned to a multiple of the pipe length, until it reaches the maximum or minimum slide position. Additional bending will be made by lips only.
 - **SlideFlw +/-7 (Slide following, enhanced):** enables the player to move the slide up to +/- 7 semitones during pitch-bend, without taking into account the real, physical, limitations of minimum and maximum slide position that are present in a physical instrument. Beyond this range, additional bending will be made by lips only.

- **Pipe Selection** (locked on iOS)
 - **Manual:** the valves or slide must be controlled by correct use of MIDI CC controls. The MIDI CCs used can be assigned to “Valve 1”, “Valve 2”, “Valve 3”, “Slide Position” parameters in the Controller Mapping page.
 - **Auto:** valves and slide position are selected automatically at each Note On

- **Unison Anti-Phasing** (for unison ensembles): when playing two or more of the same instrument simultaneously this value must be different for each instrument in order to avoid phasing effects. **Note:** this does not affect the timbre of the instrument, it affects the phase response and, slightly, the tuning variation over time. Set this parameter when you build an ensemble with multiple instances of the same instrument only.

When using Ambiente (Legacy Reverb mode = OFF), for best results, please be sure to set different Unison Anti-Phasing for each instrument of the same type in the room.

- **Valves / Slide:** shows a graphical representation of the instrument Valves / Slide position.
IMPORTANT NOTE: The fingering for the valves and the slide position displayed on the GUI is our CUSTOM fingering/position, it does not necessarily coincide with the real one, as our current math model is based on ideal straight pipes, rather than cylindrical pipes.

Audio section

- **Room & Position / Effects**: if the Legacy Reverb parameter is set to OFF, “Room & Position” opens Ambiente, the virtual room and positioning environment; otherwise, it shows the parameters affecting the audio signal processing applied at the final stage. The Legacy Reverb mode was introduced for backward compatibility with previous versions to ensure that existing projects are not unintentionally altered. After the update, existing instances will automatically open in Legacy Reverb mode. However, it is recommended to take advantage of the room simulator by keeping the Legacy Reverb parameter set to OFF.

- **Pan Pot**: pans the output signal left and right. Available only if Legacy Reverb mode is ON.

- **Main Volume**: main output volume. This can be either ‘Pre Room’ or ‘Post Room’, depending on the ‘Main Volume Processing’ parameter located in the Advanced / ROOM page. Selecting ‘Pre Room’ means the main volume will only affect the source signal, leaving the room ambiance unaltered. Conversely, selecting ‘Post Room’ means the main volume will affect the overall output, including both the source signal and the room ambience.
Header section

- **SWAM logo**: selection of the SWAM logo open the About section

- **Main menu icon**: opens the main menu page that provides access to:
 - Save & Load
 - Reset
 - Controller Mapping
 - Parameter Lock
 - Import
 - Export
 - Settings

- **MIDI Mapping icon**: opens MIDI mapping management section.

- **SEARCH icon**: opens the search screen for browsing parameters all at once with a big picture of the entire system.

- **Playing Surface icon** (only for iPadOS version): open the playing surface for playing the instrument on the iPad glass.
 NOTE: on iPhone, the playing surface is available rotating the device to landscape orientation.

- **RESET**:
 - Initialize: reset sound engine parameters and MIDI mapping
 - Advanced:
- **Reload Current Preset**: reload the current selected preset, losing all changes made from the latest saved settings
- **Sound Engine**: reset or load sound engine parameters
- **MIDI Mapping**: reset or load MIDI mapping settings
- **Micro Tuning**: reset or load micro tuning settings
- **Room Simulator**: reset or load Room Simulator parameters

- **PANIC**: use this in case of stuck notes
Expressivity

- **Expression**: main expressive control. This model set/show how hard the player is blowing into the physical model, i.e. the breath intensity.

- **Vibrato Depth**: controls the amount of vibrato or shake. Vibrato is modelled as rapid changes to the shape of the lips of the player (the embouchure) or their contact with the mouthpiece, and of the breath intensity:
 - Soft vibrato (< 0.5).
 - Shake (>= 0.5).

- **Vibrato Rate**: controls the average frequency of the Vibrato applied to the model.

- **PP Attack Noise**: controls the amount of attack noise audible on very low dynamic.
- **Attack Tongue**: the amount of percussive tonguing on mid- to high-velocity Note On events. It is ignored when Attack Control is set to Expression (see Advanced section).

- **Flutter Tongue**: controls the intensity of flutter-tonguing - a technique where the player moves their tongue rapidly, producing a growling or ‘rolling-rrrr’ effect.

- **Growl**: controls the growl intensity, which models the player producing growling noises within their windpipe.

- **Reactivity**: amount of harmonic transitions enhancement. For example, natural pipe subharmonic fluttering during valve transitions, attacks or fast dynamic changes. This effect can be heard mostly on low-range instruments (Bass Trombone, Double Bass Trombone, French Horns, Tubas, ...). A resonant pipe interacts with the player lips: the more the pipe is able to "reflect back" the sound wave, the more the lips interact with the sound wave and create turbulence.

- **Mute Control**: controls the mute applied to the instrument, as in the Main GUI (i.e. mute distance).
Play Modes

- **Pipe Model**: same as in the Main GUI.
- **Pipe Gesture**: same as in the Main GUI.
- **Mutes**: same as in the Main GUI.
- **Half Valve Amount** *(locked on iOS)*: the amount (from 0 to 1) of pipe “contamination” when Pipe Gesture is set to “Half Valve” or “Half Valve Trans.”
- **Valve/Slide Speed** *(locked on iOS)*: speed at which the Valve or Slide changes position.
• **Legato Priority**
 - OFF - no priority - always changes the valve combination or slide position to best suit the note being played.
 - ON - when possible, maintains the same pipe length (valve combination or slide position) during legato passages.

• **Pedal Notes**
 - OFF = No pedal notes available
 - ON = Makes it possible to play pedal notes one octave below the lowest nominal note of the instrument. This is possible by modeling an additional Valve.

• **Pipe Selection**: same as in the Main GUI.

• **Valve 1 (locked on iOS)**: controls the position of the first valve (when Pipe Selection = Manual).

• **Valve 2 (locked on iOS)**: controls the position of the second valve (when Pipe Selection = Manual).

• **Valve 3 (locked on iOS)**: controls the position of the third valve (when Pipe Selection = Manual).

• **Slide Position (locked on iOS)**: control the position of the slide (when Pipe Selection = Manual).

• **Fall Down**: triggers a fall down articulation.

• **Doit**: triggers a “doit” articulation.

IMPORTANT NOTE: The fingering for the valves and the slide position is our CUSTOM fingering/position, it does not necessarily coincide with the real one, as our current math model is based on straight pipes, rather than cylindrical pipes.
Timbre

Source

- **Bell Resonance**: the resonance gain of the bell.
- **Bell Dispersion Angle**: it's related to the direction of the bell. When the value is minimum, the instrument has a more direct sound and less Early Reflections. When the value is maximum, the instrument is not directed towards the listener and the sound is more affected by Early Reflections.
- **Breath Noise**: the amount of breath noise (this becomes more audible when notes are played with low Expression values.)
- **Dirtiness**: the amount of sound jitter produced by a random component of the modeled lips’ vibration (this is more audible when notes are played with high Expression values).
● **Mute Size (locked on iOS):** the size of the mute/cup, if selected (see “Mutes”).

● **Mute Tone (locked on iOS):** the tone of the mute/cup, if selected (see “Mutes”).

● **Dynamic Sens.:** Dynamic Sensitivity - this controls the scaling of the overall dynamic of the sound produced, which is affected by the Expression, the strength of the attacks, and other elements. Note that this is different to simply rescaling the Expression using a MIDI remapping, as Expression does not affect the attacks (unless “Attack Control” is set to “Expression”) and some transitions.

● **Timbral Correction:** enables or disables the Harmonics Timbral Shaping (see next).
 ○ **Harm. Select A:** the harmonic number to be equalized by Harmonic Gain A
 ○ **Harmonic Gain A:** the gain amount for harmonic selected by Harm. Select A
 ○ **Harm. Select B:** the harmonic number to be equalized by Harmonic Gain B
 ○ **Harmonic Gain B (locked on iOS):** the gain amount for harmonic selected by Harm. Select B
Capture

- **Compressor**: controls how much the dynamic compressor will change the volume output.

- **EQ Enabled**: enables or disables the Equalizer (see next).

- **EQ Low Gain**, **EQ Mid Gain**, **EQ Mid Freq**, **EQ High Gain**: Equalizer parameters. Note that ranges are different for each instrument. They have been calibrated for the harmonic contents of each instrument.
Pitch

Master Tuning

- **Master Tune**: master tuning of the instrument displayed both in Hz and cents.
- **Pitch Bend Up**: the maximum amount of upwards pitch bend, in semitones.
- **Pitch Bend Down**: the maximum amount of downwards pitch-bend, in semitones.
- **Transpose**: the amount to transpose the instrument, in semitones.
Microtuning

- **Favorites**: it is possible to store up to 7 different settings. Click and hold the preset slot to store the current configuration; click on any preset slot to recall the preset. Click on the Clear button to reset the current configuration to the default state.

- **Microtuning Keys**:
 - **Activation**: Click on any key to toggle the detune, by the amount shown on the button.
 - **Edit**: Click on the detune value to adjust. The value is presented in cents (hundredths of a semitone)

- **Root**: select the root note of Microtuning scale
- **Temperament**: if set higher than zero, this applies a kind of “spread intonation”:
 - it does not affect the pitch in the middle of the instrument
 - the higher the pitch, the more upward detuning is applied
 - the lower the pitch, the more downward detuning is applied
This means that the overall intonation of the instrument can be “spaced apart”.

If set lower than zero, it does the opposite: it applies a kind of “compressed intonation”

- **Microtuning KS**:
 - OFF: disable key switches for microtuning
 - ON: enable key switches for microtuning

- **Reset Microtuning KS**:
 - OFF: Microtuning KS activation does not reset or affect current detuning
 - ON: Microtuning KS activation resets the detuning applied.

- **Cavit Scale Ultimate** (by Cavit Artanlar): enables the “SWAM Microtuning” SysEx protocol, which allows “Cavit Scale Ultimate” iOS app to control microtuning and transposition, and to apply musical nuances typical of Arabic and Eastern music.

- **MAQAM** (by Mazeka Toys - mazekatoys.com):
 - OFF: remove the factory MIDI MAQAM configuration
 - ON: apply MAQAM factory mapping (note: all mappings to parameters assigned to CC from 102 to 114 will be removed). This allows the use of a MAQAM remote controller to apply Microtuning and Transposition on the fly. Note: be sure MAQAM is connected properly through a MIDI interface so that MIDI events can reach the SWAM application or plugin.

- **MAQAM Transpose**:
 - Note: control keyboard transpose
 - Root: control micro tuning transpose
Applying microtuning through SysEx

It's possible to control Microtuning and Transposition through MIDI SysEx messages. SWAM responds to a few SysEx protocols: SWAM Microtuning protocol, Custom protocol, and Yamaha XG arranger protocol.

SWAM Microtuning protocol

Note: Be sure “Cavit Scale Ultimate” switch is set to ON in the Pitch / Microtuning view.

Byte 1 - Beginning of sysex: F0H
Bytes 2, 3, 4 - Audio Modeling Manufacturer ID: 00H 21H 2DH
Bytes 5, 6 - Model ID: 00H 00H
Byte 7 - Command type: 00H (Read), 01H (Write)
Byte 8 - Category: 00H (System)
Byte 9 - Parameter: 00H (Transpose), 01H (Microtuning)
... - Data bytes
Byte N - End of sysex message: F7H

Data bytes

Transpose (1 byte):
Byte 10 - Transposition value in semitones: 00H -> 7FH
< 40H: negative transposition
40H: 0 cents
> 40H positive transposition

Microtuning (3 bytes):
Byte 10 - MIDI note number: 00H -> 7FH
Byte 11 - Sign:
<= 40H positive
> 40H negative
Byte 12 - Microtuning value in cents: 00H -> 64H (0 to 100 cents)
Custom Protocol

This protocol allows to change both Microtuning and Transposition on the fly through SysEx messages.

1) Microtuning message

Each message is 4 bytes:

1st byte: Beginning of sysex (F0)
2nd byte: Note value (00=C, 02=C♯, 04=D, ..., 12=A, 14=A♯, 16=B)
3rd byte: Detuning value (00 = 0, 4E = -50)
4th byte: end of sysex (F7)

F0 10 10 F7: reset all notes to not detuned

Examples:

F0 00 4E F7: Note C = -50 cents
F0 10 4E F7: Note G♯ = -50 cents
F0 16 00 F7: Note B = 0 cents

2) Transpose message

Each message is 3 bytes:

1st byte = Beginning of sysex (F0)
2nd byte = Transpose value (37=-9, 38=-8, 39=-7, 4A=-6 ... 40=0 ... 48=+8, 49=+9)
3rd byte = End of sysex (F7)

F0 10 F7: reset transpose to 0
Yamaha XG arranger protocol

Each message is 9 bytes:

1st byte: Beginning of sysex (F0)
2nd byte: Manufacturer ID - Yamaha (43)
3rd byte: Device ID (values between 0x10 and 0x1F are allowed)
4th byte: Model ID - XG (4C)
5th byte: Address High (08)
6th byte: Address Mid (00)
7th byte: Address Low - Note value (41=C, 42=C#, 43=D, ..., 4C = B)
8th byte: Detuning value (04=-60, 05=-59, 06=-58, ..., 40=0, ..., 7B=+59, 7C=+60)
9th byte: End of sysex (F7)

Examples:

F0 43 10 4C 08 00 41 5E F7: Note C = +30 cents
F0 43 10 4C 08 00 41 18 F7: Note C = -40 cents
F0 43 10 4C 08 00 4A 0E F7: Note A = -50 cents

Applying microtuning using key switches

You can also apply microtuning to notes using key switches. To do this you must first go to Advanced -> MIDI and enable the key switches using the “KS Octave” parameter.

Then go to Pitch -> MICRO TUNING and set the “Microtuning KS” parameter to “ON”.

This parameter can be assigned to a MIDI Control Change. A handy mapping is CC “64”, i.e. the Sustain pedal, which is the most suitable option for this task.

When “Microtuning KS” is active, you can press the appropriate key switches that correspond to the notes you would like to detune. For example, by pressing the E1 key switch detuning will be applied to all E notes.
How to detune selected notes

1. Set the “Microtuning KS” parameter ON by pressing and holding down the Sustain pedal (or send a value greater than 64 via the CC you have assigned for Microtuning KS); the key switches will turn light gray.

2. Press any key switches (even multiple at the once) that correspond to the notes you want to detune.

3. Exit “setup” mode by releasing the sustain pedal (or send a value below 64 via the CC assigned for this task).

For example: if you need an Arabic scale in C and want to detune all E and B notes -50 cents, the steps would be:

1. Press and hold the sustain pedal
2. Press E1 and B1
3. Release the sustain pedal

The affected notes and the detune amount is displayed in the Pitch -> MICRO TUNING page.
If the “Reset Microtuning KS” parameter is ON, as soon as you re-enable Microtuning KS (by pressing the Sustain pedal or sending a value greater than 64 via the CC you have assigned for this task), the current detuning of all the notes will be cleared.

Keeping the pedal pressed, you can immediately detune a new set of notes by pressing the appropriate key switches.

This allows you to apply different microtuning scales on the fly.

If you don’t want to reset the microtuning every time you re-enable Microtuning KS set “Reset Microtuning KS” parameter to OFF.

Microtuning Templates

From the Main “...” Menu and Preset Manager it is possible to Save and Recall Microtuning Templates. A list of Factory Microtuning Templates is provided.
Advanced

Instrument

- **Unison Anti-Phasing** (for unison ensembles): same as in the Main GUI.
- **Panpot Type** *(locked on iOS)*
 - Dyn1, Dyn2 - emulates small movements of the player.
 - Acoustic - adjusts the position of the instrument in the sound field, but does not affect the reverb.
 - Balance - affects both the instrument and the reverb.
- **Release Time**: the time (measured in milliseconds) that breath continues for after note-off.
- **Dynamic Pitch** *(locked on iOS)*: how much the pitch varies during a fast change of expression.

- **Auto Expression** *(locked on iOS)*: controls the amount of automatic expression applied during transitions between notes.

- **Vibrato Style**
 - Classic - limit the vibrato amount (i.e. for classical brass instruments)
 - Shake - allows to make shake effects controls vibrato amount parameter

- **Vibr. Rand. Rate** *(Vibrato Random Rate)* *(locked on iOS)*: controls how much randomness is applied to the rate of vibrato.

- **Vibrato Fade In** *(locked on iOS)*: how long (in milliseconds) it takes for the vibrato to reach the final amount after each Note On.

- **Dynamic Resonance** *(locked on iOS)*: any brass instrument has a main resonant frequency band. Dynamic resonance it's the amount of variation of gain and center frequency of the resonant frequency in function of the Expression.

- **Random Lips** *(locked on iOS)*: controls how much randomness is applied to the tuning and tension of the player's modeled lips.
- **MIDI Profile:**
 - MPE: for MIDI Polyphonic Expression compatible devices.
 - Legacy: MIDI 1.0 devices.

- **MIDI Channel:** is the MIDI channel the sound generator receives notes and controllers that affects the sound (default is ANY). Note that this can be different from Key Switches MIDI Channel, so it is possible to control Key Switches from a different device. For MPE Devices this is forced to ANY.
● **Portamento Control:**
 ○ Velocity: the portamento time is controlled by the Note On velocity of overlapping notes.
 ○ CC: the portamento time is controlled by a MIDI Continuous Control (such as Control Change, AfterTouch, NRPN)
 ○ CC Time (x5ms): the portamento time is controlled by a MIDI Continuous Control (such as Control Change, AfterTouch, NRPN) - you have to assign "Portamento Time" parameter (in External Controller Mapping view) to a MIDI controller.

● **Portamento Max Time:** controls the portamento time, set to OFF to disable portamento (no portamento when this value is < 1,5).

● **Note Off Velocity** (if supported):
 ○ OFF: fixed note-off velocity at 112
 ○ ON: get legato retrigger velocity from note off velocity

● **Attack Control** - how the attack of the note is controlled:
 ○ Vel. Hard - controlled strongly by the Note On velocity.
 ○ Vel. Soft - controlled weakly by the Note On velocity.
 ○ Expression - controlled by the shape of expression control.

● **Wind Controller Release Mode:** set Release Time to minimum value and disables the Release Time parameter. Useful especially for Wind Controllers, as they send Note-Off events when Expression reaches the minimum value. This way the instrument is more reactive, e.g. when double or triple-tonguing.

● **Breath Ctrl Mode** (Breath Control Mode):
 ○ OFF
 ○ ON: suitable for Breath Controllers, allows the player to produce another note attack, using the breath envelope, while holding a note.

● **Breath Ctrl Hi-Res Threshold:** (Breath Control Hi-Resolution Threshold) set the threshold for the Note On to be triggered when using MIDI Hi-Resolution messages for the Expression parameter, when Breath Control Mode is ON.

● **Breath Ctrl Attack Sens.** (Breath Control Attack Sensitivity) controls the sensitivity of the Note On attack strength for notes triggered in Breath Control Mode.
- **Pitch Bend Curve**
 - ON: non-linear pitch-bend, for better pitch control especially when using a physical controller which is separate to the playing surface, so there is no correspondence between the controller and the note positions.
 - OFF: linear pitch-bend (recommended for devices which integrate the pitch bend control with the playing surface, so the pitch-bend movements on the surface correspond directly with notes. Many current MPE devices fall into this category).

- **KS MIDI Channel** (Key Switches MIDI Channel): select which MIDI channel will be used to receive key switch information. Select from channel 1 to 16 or ANY.

- **KS Octave** (Key Switches Octave Transpose): allows you to transpose the Key Switches to begin in the octave from C-1 to C2, or turn off key switches (OFF).

- **KS Velocity Remap** (Key Switches Velocity Remapping): since some Key Switches are velocity-dependent, this parameter controls the distribution of the thresholds between states.
Room

- **Legacy Reverb:**
 - **ON:** choose this option if you want to use the legacy internal reverb available in the previous product versions. This option is recommended if you have projects already using that reverb or a third party external reverb.
 - **OFF:** disable the Legacy Reverb and activate the internal virtual room and position engine, Ambiente. This option is recommended to get the most realistic sound for each instrument that is located in the same room.

- **Main Volume Processing:**
 - **Pre Room:** the volume control is applied to the sound source, but not to the virtual room. This ensures that reverb is not affected by eventual volume automation.
 - **Post Room:** the volume control is applied to the sound signal after the virtual room processing. In case of volume control, reverb is also affected.
- **Reverb Modulation**: when set to ON, reverb has a lusher, silky sound, but it requires more CPU power.

- **Source Delay Mode**: in real acoustic environments sound travels at a given speed, so there is a latency between the sound generation time and the time the sound signal is captured by the microphone (or listener’s ears). This applies also to the traveling time of the sound waves reflected by the room surfaces. Source Delay Mode controls how the sound traveling time is computed.
 - No Delay: to avoid extra latency when playing the section in real-time, direct sound traveling time is ignored. Traveling time of the reflected waves is computed subtracting the direct wave traveling time.
 - Real Delay: direct sound traveling time is not ignored, behaving like in the real acoustic environment. This can lead to latency, when playing the instrument in real-time.
 - Nearest: direct sound traveling time is ignored for the section closest to the microphone only. All other sound wave traveling latencies are computed accordingly.
Effects

Visible only when Legacy Reverb mode is ON (Advanced Settings / Room)

- **Early Reflection Amount**: amount of Early Reflections, useful especially for Horns.
- **Reverb Mix**: controls the amount of reverb added to the dry signal.
- **Reverb Time**: controls the decay time of the reverb tail.

Room & Position

Visible only when Legacy Reverb is OFF (Advanced Settings / Room)

All SWAM instruments now come equipped with the revolutionary Ambiente room simulator. This significant evolution allows SWAM instruments to "talk" to each other and share the same virtual room. Unlike a simple reverb, Ambiente is a sophisticated spatializer that lets you place instruments in specific locations within a virtual space.
With Ambiente, you can utilize up to four distinct rooms simultaneously. Three of these rooms are fully customizable, allowing you to choose room size, materials, and microphone distance. The fourth room is designed for close-miking all sources, enabling seamless integration with third-party spatializers or external reverbs.

Each SWAM instance communicates with others, sharing room and instrument position information. This means you can manage this functionality from any SWAM instrument without opening each one individually. Communication is handled through a local network protocol, so no internet connection is required, but certain technical requirements must be met. For more details, please refer to the Global Settings paragraph.
Using the Ambiente room simulator

Overview of the Interface

In the Ambiente room simulator you will find four tabs at the top of the interface representing the four available rooms. The first three tabs correspond to the customizable rooms, while the last tab represents the "Close Mic" room. To select a room, simply click on the corresponding tab.

Header Controls

In the header, at the top right corner, there are two important buttons:

- **Manage**: This button allows you to manage the current room, including renaming the room and moving instruments to this or other rooms.
- **Close**: This button closes the Room Simulator and returns you to the main instrument view.

Main Screen Views

The main screen offers two views for managing your instruments:

- **Room View**: This graphical interface represents the room as viewed from above. You can drag instruments to position them within the space.
- **List View**: This list-based interface allows for easier management of instrument positions, particularly useful for screen reader users.

Room Type Selector and Room Customization

Above the main view, you will find the Room Type Selector, which lets you choose from up to 18 different room types. These types are derived from combinations of parameters such as absorption materials and room size, which can be adjusted in the lower section of the interface.

Room Map and Microphone Distance

In the lower section, you'll find the Room Map, a small representation of the room showing the distance from the stereo recording microphone. You can adjust the microphone distance using the fader located to the right of the room map.

Templates Shortcut

A shortcut to the Templates section is available for quickly loading preset room and microphone configurations, whether they are Factory presets or user-defined settings.
With these features, the Ambiente room simulator provides a powerful and flexible environment for positioning your instruments, enhancing your workflow, and unleashing your creativity.

Search

The Search view has been created to improve the experience for beginners, experts and visually impaired users. Beginners can find any parameter with a handy search feature without the need to browse all sections. For expert users, it offers a streamlined page where all parameters can be easily located, viewed and compared, to have the big picture of the sound engine. Simultaneously, it is designed to be accessible, compatible with screen readers, facilitating seamless navigation for users who are blind or visually impaired.

The “Search Parameter” field allows users to highlight only those parameters containing the entered text. This feature ensures that, when using a screen reader, only the relevant parameters are vocalized by the text-to-speech synthesis.
Start typing in the search field, and matching results will be highlighted. Clicking or tapping on a parameter will open a popup window with the edit controls.

Controller Mapping

The MIDI Controller Mapping section allows the user to manage the mapping between an external MIDI controller and the instrument parameters.

To access this page, click on the MIDI mapping icon in the header, or from the Main Menu -> Controller Mapping -> Assign & Learn. By default, the “ASSIGN” mode is selected.

In this view/context, the parameters assigned to a controller are highlighted with a purple area with dashed borders; parameters which are not assigned are highlighted with a green area. Parameters not highlighted are not available for mapping. It is possible to browse the entire interface in this mode to select and manage any parameter for mapping.
- To map or edit a parameter mapping, click directly on the parameter to access the mapping screen for that parameter.

- Click on the “TABLE” button in the top header to view the list of all parameters, their mapping status and to manage the sound engine parameters that have a direct effect on playability results with different controller types.

- Click on “Templates” for quickly loading MIDI Controller presets and configurations, whether they are Factory presets or user-defined settings.

- Click on the “X” button in the top header to exit from Controller Mapping mode.

Mapping Screen

Assigned parameter status

- **Back**: goes back to the previous screen
- **CURVE**: show the MIDI remapping curve for the selected mapping
- **UNASSIGN**: removes the current mapping and goes back to MIDI Learn mode
- **LEARN**: turns ON/OFF the MIDI LEARN to edit or remap the current parameter
- **X**: close the mapping screen and turn off the MIDI Mapping Mode

Assignment section:

 - **Message**: MIDI message type:
 - CC: Control Change (1 byte value).
 - CC-HIRES: two coupled Control Change messages, MSB and LSB.
 - AT: Aftertouch (1 byte value).
 - NRPN: Non-Registered Parameter Number.
 - **Channel**: change which MIDI channel this controller will be affected by, from 1 to 16, or ANY.
 - **CC# MSB**: available only for Message = CC, CC-HIRES, NRPN:
 - if Message = CC, MSB is the CC number.
 - if Message = CC-HIRES, MSB is the Most Significant Byte of the two-byte hi-resolution message, from CC0 to CC31.
 - if Message = NRPN, MSB is the Most Significant Byte of the two-byte NRPN message.
 - **CC# LSB**: available only for Message = CC-HIRES, NRPN:
 - if Message = CC-HIRES, LSB is the Least Significant Byte of the two-byte hi-resolution message, from CC32 to CC63.
 - if Message = NRPN, LSB is the Least Significant Byte of the two-byte NRPN message.

NOTE:

- **CC** means “Control Change”, *it is a standard MIDI message used to control a wide variety of functions in a synthesizer or software instrument. The value of a CC is represented by a 7-bit byte, allowing a total of 128 values of resolution.*

- **AT** means “Aftertouch”. *Some MIDI devices have the ability to sense the amount of pressure which is being applied to the keys or the touch surface while they are depressed. This pressure information, commonly called "Aftertouch", may be used to control some aspects of the sound produced by a synthesizer or software*
instrument. AT is a standard 7-bit MIDI message, allowing a total of 128 values of resolution.

- **CC-HIRES** messages are a combination of two CC messages coupled together, thus providing a resolution of 14-bit, i.e. 16384 levels, for the represente values.

- **NRPN**, i.e. “Non-Registered Parameter Number”, extends the number of controllers available via MIDI. They are typically used to send parameter data to a synthesizer and software instruments in order to edit sound patches or other data, providing a resolution of 14-bit, i.e. 16384 levels, for the represente values.

- **MSB** means “Most Significant Byte”. For CC and AT messages, it is the only byte representing the control value. For CC-HIRES and NRPN messages, it is the most significant part of the two-byte message.

- **LSB** means “Least Significant Byte” and is only for CC-HIRES and NRPN messages. It is the least significant part of the two-byte message.

For more details on what CC, NRPN, MSB, LSB, please refer to MIDI specifications at https://midi.org

- **CURVE**: click on the button to show the mapping curve. The curve can be used to adjust the controller-to-parameter behavior with:
 - **Input Min** (left arrow): the minimum threshold on the controller input value. Values below this value will produce the “Out Min” value (or the “Out Max” value, if the curve is “inverted”).
 - **Input Max** (right arrow): the maximum threshold on the controller input value. Values above this value will produce the “Out Max” value (or the “Out Min” value, if the curve is “inverted”).
 - **Output Min** (bottom arrow): the minimum output value.
 - **Output Max** (upper arrow): the maximum output value.
 - **Enable Curve**: turn on / off the remapping function.
 - **Bipolar Curve**: useful for “bipolar” controls, i.e. where 64 is considered the “zero” of the controller. The parameter of the remapping curve are referred to just one side and the applied to the “negative”, antisymmetric side
 - **Shape**: controls the shape of the remapping curve (be aware, small changes can produce high variations, depending on the Symmetry parameter).
 - **Symmetry**: controls the symmetry of the remapping curve.
Unassigned parameter status
Any click on an unassigned parameter goes to this screen.

MIDI Learn
If “LEARN” is active, SWAM automatically listens for MIDI input messages while in LEARN MODE. Move the controller you want to connect to automatically complete the mapping.

The area “Controlled by” will be automatically filled in by MIDI Learn but can still be edited by manual input as well.
The list of values of the “Message” parameter can be accessed with a long press gesture (click & hold).
MIDI Inputs quick access

For the Standalone version, a quick access to the MIDI input devices is available from the MIDI Mapping by clicking on the “INPUTS” icon.

Note: the MIDI Inputs panel shows up automatically at startup, if no MIDI Input has been selected before or if any previous connection has not been found.
MIDI Mapping Templates

It is possible to recall a predefined set of both pre-defined assignments for well known MIDI Controllers and User MIDI assignments through the TEMPLATES icon.

These entries allow us to recall predefined sets of assignments without impacting on the Sound parameters. This is useful when switching between different physical MIDI controllers without losing the timbre and sound behavior obtained acting on the Sound parameters.

A list of Factory Templates for the most known MIDI controllers is provided.
MIDI Mapping Table

The “MIDI Mapping Table”, available clicking on the MIDI mapping icon in the header
or from the Main Menu -> Controller Mapping -> MIDI Mapping & Quick Reset, screen recaps all the mapping settings, providing the big picture of all mappings.

This is the list of all the parameters that can be mapped individually by the process described above. Click on any row to create a new assignment, or to edit an existing assignment.

When editing the midi mapping, the system runs a check if the external control (for example a CC message) is already assigned to map another parameter. This check, in case of multiple assignments, shows a warning message displaying a yellow header in the parameter screen (“Mapping already used for other parameter(s)”) and a yellow icon on the MIDI Mapping Table summary screen. This warning message is displayed to help avoid unintended multiple assignments, but multiple assignments are allowable and will function, should you have a need to make them. In that situation, simply disregard the warning.
Main menu

The Main Menu is available when clicking on the top-right icon.

- Preset Manager: open the Preset Management window.

- Reset:
 - Initialize: reset sound engine parameters
 - Advanced:
 - Reload “current preset”: reload the current selected preset, losing all changes made from the latest
 - Sound Engine: reset or load sound engine parameters
- MIDI Mapping: reset or load MIDI mapping settings
- Micro Tuning: reset or load micro tuning settings
- Room Simulator: reset or load Room Simulator parameters

Controller Mapping:
- Assign & Learn: open MIDI mapping management section
- MIDI Mapping & Quick Reset: open MIDI parameters list & Quick Reset
- Import: controller mapping from file

Parameter Lock:
- Sound Engine Parameters: freeze the sound when browsing your Presets
- External Controller Mapping: keep the same MIDI Controller Mapping with different Presets
- Micro Tuning Settings: keep the same micro tuning settings with different Presets
- Room Simulator Settings: keep the same room simulator settings with different Presets

Import:
- Preset: load whole .swam preset file
- Sound Engine Parameters: load a sound settings
- MIDI Mapping: load MIDI mapping settings
- Micro Tuning: load micro tuning settings
- Room Simulator: load room simulator settings

Export:
- Preset: save the current instrument state as a .swam preset file
- Sound Engine Parameters: save only sound engine parameters settings
- MIDI Mapping: save only external controller settings
- Micro Tuning: save only micro tuning settings
○ Room Simulator: save only room simulator settings

● Settings:

○ Audio: open the “Audio Setup” window (available for the Standalone App only).

○ MIDI: open the “MIDI Setup” window (available for the Standalone App only).

○ Options: shows a list of global settings for the application or plugin

○ Accessibility: Settings and Keyboard Shortcuts

○ Window Size: show a small popup window that allows to set the GUI orientation and zoom factor.

○ Account & License: open the “Account & License” window.

○ About: open the “About” page, where it’s possible to check the version and build number, access to the online resources and show the Credits
Preset Management

SWAM presets are organized into four groups of parameters and settings: Sounds, MIDI Mapping, Micro Tuning, and Room. A preset is a container that can store different types of data, specifically:

- **Sounds**: Parameters of the sound engine.
- **MIDI Mapping**: How parameters are mapped through MIDI controllers.
- **Micro Tuning**: Management of the micro tuning engine.
- **Room**: Settings of the Ambiente room simulator.

User presets can be added, edited, and deleted. Factory presets cannot be edited or deleted; any "Save As" action performed on a Factory preset generates a User preset.

We also provide templates that allow you to reset a subset of parameters without losing your global state. For example, you can switch from the default Seaboard mapping to the default Wind controller mapping without losing your sound configuration.
Preset navigation and selection

To open the list of available presets, select the Preset name area in the header of the main view, or navigate to Main Menu -> Preset Manager.

Presets can be searched by typing keywords in the Search area and can also be filtered by type: Sound, MIDI Mapping, Micro Tuning, or Room.

To select a preset, click on the desired item in the list, or use the keyboard accessibility commands if a screen reader is active.

For details on preset compatibility across different product releases, please refer to the [Backward compatibility with previous versions: Legacy Reverb mode explained](#) section.

Saving a User Preset

There are two methods to save a User preset:

1. **Save As:** This option allows you to create a new User preset based on the current settings of an existing preset, including Factory presets. To use this option:
 - Select the desired preset.
 - Modify the parameters as needed.
 - Click the "Save As" button.
 - Select one or more groups to include in the new preset: Sound, MIDI, Micro Tuning, Room.
 - Enter a name for the new User preset and save it. The new preset will now appear in the list of User presets.

2. **Duplicate:** This option creates an exact copy of the selected preset, which can then be modified. To use this option:
 - Select the preset you want to duplicate.
 - Click on the contextual menu (represented by the "...") icon.
 - Click the "Duplicate" button.
 - The duplicated preset will now appear in the list of User presets, you can then rename and edit as needed.
Editing and Exporting Presets

In the preset list, the contextual menu (represented by the "..." icon) provides additional options. Note that the "Edit" and "Export" options are available only for the currently selected preset. Therefore, it is possible to modify and export only the preset that is currently selected.

To edit a preset:

- Select the preset you want to modify.
- Click the "..." icon next to the preset.
- Choose Edit" from the contextual menu.
- On the next panel you can rename the preset as well as select the parameter groups you want to store and include in the current preset (sound engine, midi mapping, micro tuning and room simulator).
To export a preset:

- Select the preset you want to export.
- Click the "..." icon next to the preset.
- Choose "Export" from the contextual menu.

We also provide "templates" that allow you to reset a subset of parameters without losing your global state. For example, you can switch from the default Seaboard mapping to the default Wind controller mapping without losing your sound configuration.

Presets can be recalled either in their entirety or partially. Partial recall is done through templates, which allow loading data from the MIDI Mapping, Micro Tuning, and Room groups without affecting the sound settings. Templates are also contextually available in their respective areas of interest.

Default startup Preset and other options

Any preset can be selected to become the “default” one, i.e., the one loaded at startup. To do this, click on the "..." contextual menu next to the preset name and choose “Set as default.”

In addition to setting a preset as default, the contextual menu provides several other options:

- Edit: Modify the currently selected preset.
- Export: Export the currently selected preset.
- Delete: Remove a User preset if necessary. Note that this option is only available for User presets and not for Factory presets.
To summarize, the contextual menu allows you to:

- Set a preset as the default.
- Edit the currently selected preset.
- Export the currently selected preset.
- Delete a User preset.

These options make it easy to manage your presets efficiently, ensuring you have quick access to your preferred settings and the ability to customize and organize your presets as needed.
Parameter Lock

The “Parameter Lock” feature allows you to switch presets without affecting the category of parameters that is locked.

The Parameters Lock function is available with a long press on the Preset name area, or from Main Menu -> Parameters Lock.

- Select “Sound Engine Parameters” if you want to freeze the sound when browsing your presets.
- Select “External Controller Mapping” if you want to experiment with different presets, keeping the same MIDI controller mapping. Useful if you want to change sound but keep playing with your MIDI controller.
• Select “Micro Tuning Settings” if you want to switch presets without affecting the micro tuning settings.

• Select “Room Simulator Settings” if you want to switch presets without affecting the room simulator settings.

Settings

Audio Settings

The Audio Settings page is available for Standalone version only, and allows to select the proper Audio device, Output port, Active channels, Sample Rate and Buffer Size.

For real time playing, a combination of Buffer Size and Sample Rate should provide a maximum latency of about 10 ms.
The MIDI Settings page is available for Standalone version only and allows you to select one or more MIDI devices to control the instrument.

It's also possible to use a Bluetooth MIDI device by selecting “Bluetooth MIDI”.

Once you have correctly selected your MIDI controller(s), be sure that suitable MIDI mapping has been configured, eventually through MIDI Templates.
Account & License

The Account & License shows the user currently logged in.

- Manage account: opens the Audio Modeling Customer Portal in a Web Browser
- Log out: logs the user out from the application
Options

- **Disable screensaver**: avoid screensaver activation when the App is open
- **Enable virtual MIDI ports** (macOS only): enable an Input and Output virtual MIDI port to control the instrument from an external App, or use the SWAM App to control another music App
- **Enable scroll wheel for horizontal sliders**: allow the use of the scroll wheel for changing slider values
- **Middle C4**: set octave notation so that Middle C is C4, corresponding to MIDI note number 60. If deselected, Middle C is C3.
- **High Quality Graphics**: quality level of User Interface details, like shadows and gradients. Turn off for lower CPU usage
Global Settings

Common / global settings for all products are managed from the Audio Modeling Software Center application. Click on the “...” menu and select the “General” option.

These settings apply to all installed SWAM products:

- **Enable OpenGL Render**: when selected, render the graphics of SWAM instruments.
- **“Expression received” check at startup**: when selected, warns the user to check the controller mapped to the Expression parameter if a note is received before an Expression event (for Desktop version only)
- **Port Number**: (OSC Settings) used for the intercommunication of SWAM String Sections instances via Open Sound Control (OSC) UDP network messages on port 9001. You can change the port number and select a port from 5000 to 9999.
- **Multicast IP Address**: (OSC Settings) used for the intercommunication of SWAM String Sections instances via Open Sound Control (OSC) exclusively on 224.0.0.173 IP address.

Local Network Permission

NOTE: providing local network permission to your DAW or standalone SWAM Solo Brass instances is mandatory to allow proper communication between SWAM instruments.

If you Firewall protection is enabled, you should see the following alert message:

macOS:

![macOS Alert](image1)

Windows:

![Windows Alert](image2)
If you have denied network permission, you can re-enable it in the operating system control panel.

macOS

System Settings ... -> Network -> Firewall -> Options ...

and select “Allow incoming connections” for each SWAM instruments

![Firewall settings](image)

Windows

Settings -> Privacy & security -> Windows Security -> Firewall & network protection -> Allow an app through firewall

and select “Allow another app…” for add SWAM instruments

![Firewall settings](image)
Accessibility

Keyboard shortcuts are not only a powerful tool for expert users but also an essential aid for blind or visually impaired users, providing direct access to functionalities. We have carefully designed these shortcuts to be intuitive and easy to remember, ensuring that all users can navigate and utilize our software efficiently. You can find and review all the available keyboard shortcuts in the Accessibility page.
The About page shows the current version and build number, as well as a few other options:

- **Version**: the current version and build number of the App. On Desktop, click on “Version” to open the Customer Portal and check for updates.
- **SWAM Website**: opens the SWAM section of the Audio Modeling website in a Web Browser.
- **Manual**: opens the online User Manual page in a Web Browser.
- **Support**: opens the Support Center page in a Web Browser.
- **Credits**: shows the credits page.
iOS

IMPORTANT NOTE: the current version of SWAM Solo Brass Apps for iOS is still v3.7.3. The Ambiente room simulator, the Search page, and the new Preset management system will be available with the next update.

SWAM apps for iOS are available for iPad and iPhone. Both of those versions share the same engine and GUI elements as the desktop versions, with a few exceptions to adapt the user experience to the specifics of the devices.

- A few advanced parameters are unavailable (locked) on iPad and iPhone. However, desktop presets that include changes to these parameters can be imported to iOS without problem.
- iPad and iPhone offer on-screen, touch-based playing surfaces.
- iPhone has a different layout, but is consistent with the desktop and iPad versions: the same graphical elements and controls are reorganized to maximize the experience on a smaller screen.

List of locked parameters on iOS version

Currently, the following parameters are locked on both iPad and iPhone versions:

- Pipe Model
- Half Valve Amount
- Valve/Slide Speed
- Pipe Selection
- Valve 1
- Valve 2
- Valve 3
- Valve 4
- Slide Position
- Mute Size
- Mute Tone
- Panpot Type
- Dynamic Pitch
- Auto Expression
- Vibr. Rand. Rate
- Vibrato Fade In
- Dynamic Resonance
- Random Lips
- Harmonic B Gain

Unlocking through In-App Purchase will be provided in future.
iPad

The GUI on the iPadOS version is identical to that of the desktop version. In addition, you will find a “PLAY” icon that accesses a dedicated, touch playing surface.

On-Screen Playing Surface

The on-screen playing surface has the following purposes:

- Provide an onboard screen keyboard to perform at basic level without using any external controller
- Provide a visual feedback representation of the sound evolution (Dynamic Envelope)
- Provide direct controls of the most useful performance parameters (Expression, mute selection, control faders)
NOTE: To record and playback on a DAW what has been played on the On-screen playing surface, the “SWAM On-Screen Keyboard” MIDI Mapping Templates must be selected. (see the MIDI Mapping Templates section).

The dynamic areas can be selected just by tapping on the tab name: Controls, Mutes, or Dynamic Envelope.

Controls

This view provides six faders that are very handy in live performance for tweaking the sound in real time, or to add subtle expressive details when needed. Play and tweak them in real time using the onboard keyboard, or use them as an extra control surface when playing with an external controller.
Mutes

This view shows the mute selector. Use the arrows to select the mute type (or get rid of it) and control the mute distance by touching the mute with your finger.
Dynamic Envelope

This view shows how the sound evolves in real time. The more you change the Expression setting and other parameters, the more interestingly and expressively a SWAM instrument plays. Adjust the Expression setting to create nuance in the sound; use the Dynamic Envelope for visual feedback.
Control Surface Keyboard setup

The keyboard has a toolbar with dedicated controls to:

- Shift the pitch by octave (Octave - and Octave + buttons)
- Manage the keyboard size: Select a smaller size to fit more keys on the screen/
 - Small (show 1 octave/13 keys)
 - Medium (show 1.5 octaves/18 keys)
 - Large (show 2 octaves/25 keys)
- Scroll the keyboard: Drag the ribbon to adjust the starting point of the keyboard.
- X and Y axis (direction) assignment: Configure modulation behavior for finger movement along the horizontal and vertical axes.

X: Pitch Bend Control Along the X Axis.

Tap on the “X” to show pitch bend range or unassign pitch bend control.
Y: Parameter Control Along the Y Axis

Tap on the “Y” to change the parameter assignment for a Y-axis gesture (by default assigned to Vibrato Depth), and to check what MIDI control is mapped to the parameter. A shortcut to the MIDI Mapping page is provided to make it easy to change the MIDI mapping for the controlled parameter. This is useful when using the control surface for recording MIDI on a DAW, or controlling an external instrument.
iPhone

Keep the iPhone in portrait orientation for editing any parameter or configuration, rotate to landscape orientation to play the instrument using the on-screen surface.

Getting Started

To get started, be sure to check the Audio and MIDI settings, especially if you are using an external audio device or external MIDI controller.

Audio settings are under Main … (“three dots”) menu -> Settings -> Audio. Check that the Active Output Channels, Sample Rate and Buffer Size are correctly selected.

MIDI settings are under Main … (“three dots”) menu -> Settings -> MIDI. Select the MIDI port corresponding to the MIDI controller you are using to play the instrument.
Select the MIDI mapping preset that best matches your MIDI controller. This is done from
the MIDI Preset List icon on the Home page, or under Main … (“three dots”) menu ->
Controller Mapping -> MIDI Mapping & Quick Reset -> PRESETS.

Finally, load a Sound preset from the list, selecting the “Sound Preset List” icon.
Editing

Portrait orientation is most suitable for editing the instrument, tweaking the sound, and performing advanced settings.

The “…” (“three dots”) menu on the top-right corner is the same as in the desktop and iPad versions. Refer to the “Main Menu” paragraph for details.

The “MIDI Preset List” icon gives you quick access to MIDI presets for a plug & play mapping of several external MIDI controllers.

The “Sound Preset List” icon is a shortcut to Sound presets selection and management.

On the iPhone, the Main Window has been split into five sections: Home, Sound, Control, Master and Edit. Use the navigation icons on the footer to reach the sections. Refer to the Main Window section and following chapters for details.
On-Screen Playing Surface

Be sure to select the “SWAM On-Screen Keyboard” entry from the list of MIDI presets, then rotate the iPhone to landscape orientation to access the on-screen playing surface.

Controls and features are identical to the iPad version. Please refer to the earlier iPad section for a detailed description.

Controls
Quick access menu

A … (“three dots”) menu is available in the top right corner for quick access to sound parameter initialization, and sound and microtuning preset recall, and MIDI mapping selection.
Key Switches

Depending on the “KS Octave” parameter, Key Switches can be positioned beginning at any octave from C-1 to C2, or they can be disabled.

By default, the Key Switches are positioned starting from C1 (MIDI note 24), where C3 (MIDI note 60) = Middle C. You can change the MIDI channel from which Key Switches receive note events through the “KS Channel” setting. This can be useful when controlling Key Switches from a separate keyboard.

The Key Switch state depends on the Note On velocity. The velocity curve can be adjusted using the “KS Velocity Remap” parameter.

The Key Switches provided are:

- **C = Pipe Gesture**, depending on the selected Pipe Model at the next Note On:

<table>
<thead>
<tr>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves</td>
<td>Low Velocity = Norm Valve (overtone transitions).</td>
</tr>
<tr>
<td></td>
<td>Mid Velocity = Half Valve Transitions.</td>
</tr>
<tr>
<td></td>
<td>High Velocity = Half Valve.</td>
</tr>
<tr>
<td>Slide</td>
<td>Low Velocity = Fixed Slide (overtone transitions).</td>
</tr>
<tr>
<td></td>
<td>Mid Velocity = Slide Follow Real (bend).</td>
</tr>
<tr>
<td></td>
<td>High Velocity = Slide Follow +/-7 (extended).</td>
</tr>
</tbody>
</table>

- **C# = Fall Down**. Perform an immediate Fall Down starting from the currently playing note (where the pitch and volume drop rapidly):
 - Velocity controls Fall Down speed.

- **D = Doit**. Perform an immediate Doit starting from the currently played note (where the pitch rises rapidly and the volume decays):
 - Velocity controls Doit speed.

- **D# = Legato Priority** (at next Note On):
 - Low Velocity = OFF
 - High Velocity = ON
• **E = Force Hold Compatible Pipe**
 ○ While this key is held, the instrument tries to maintain the same pipe length for all notes played (valid for both legato and staccato).

• **F = Pipe Selection.** Controls “Pipe Selection” parameter. Helpful for anticipating the best slide position or valves combination before the next note on:
 ○ Low Velocity = Auto
 ○ High Velocity = Manual

NOTE: All parameters controlled by the Key Switches can be controlled by MIDI Control Change, Aftertouch and NRPN messages as well, through the Controller Mapping section.
Instrument ranges

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Middle C = C3</th>
<th>Middle C = C4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional range</td>
<td>Regular range</td>
</tr>
<tr>
<td>SWAM Piccolo Trumpet</td>
<td>E2 - Eb3</td>
<td>E3 - E6</td>
</tr>
<tr>
<td>SWAM Trumpet C</td>
<td>Gb1 - F2</td>
<td>Gb2 - C6</td>
</tr>
<tr>
<td>SWAM Trumpet</td>
<td>E1 - Eb2</td>
<td>E2 - Db6</td>
</tr>
<tr>
<td>SWAM Flugelhorn</td>
<td>E1 - Eb2</td>
<td>E2 - Ab5</td>
</tr>
<tr>
<td>SWAM Flugelhorn Eb</td>
<td>A1 - Ab2</td>
<td>A2 - Eb5</td>
</tr>
<tr>
<td>SWAM Alto Trombone</td>
<td>A0 - Ab1</td>
<td>A1 - E5</td>
</tr>
<tr>
<td>SWAM Tenor Trombone</td>
<td>E1 - Eb2</td>
<td>E2 - Db6</td>
</tr>
<tr>
<td>SWAM Tenor Bass Trombone</td>
<td>E0 - Eb1</td>
<td>E1 - C5</td>
</tr>
<tr>
<td>SWAM Bass Trombone</td>
<td>B-1 - Bb0</td>
<td>B0 - Ab4</td>
</tr>
<tr>
<td>SWAM Double Bass Trbn</td>
<td>A-1 - Ab0</td>
<td>A0 - G4</td>
</tr>
<tr>
<td>SWAM French Horn Bb</td>
<td>E0 - Eb1</td>
<td>E1 - Db5</td>
</tr>
<tr>
<td>SWAM French Horn F</td>
<td>B-1 - Bb0</td>
<td>B0 - A4</td>
</tr>
<tr>
<td>SWAM Euphonium</td>
<td>E0 - Eb1</td>
<td>E1 - Bb4</td>
</tr>
<tr>
<td>SWAM Tuba Eb</td>
<td>A-1 - Ab0</td>
<td>A0 - E4</td>
</tr>
<tr>
<td>SWAM Bass Tuba</td>
<td>E-1 - Eb0</td>
<td>E0 - C4</td>
</tr>
</tbody>
</table>

Notes:

- Ranges are provided in Concert (or Natural) pitch.
- Middle C can be switched from C3 to C4 in Main Menu -> Settings -> Options.
- To extend the lower range of the instrument act on the “Pedal Notes” parameter in the “Play Modes” page.
- SWAM Tenor Trombone, SWAM Tenor Bass Trombone, SWAM Bass Trombone, SWAM Double Bass Trombone, SWAM French Horn Bb, SWAM French Horn F, SWAM Euphonium, SWAM Tuba Eb are transposed -12 semitones by default. Set the Transpose parameter to 0 to play with real pitch.
- SWAM Bass Tuba is transposed -24 semitones by default. Set the Transpose parameter to 0 to play with real pitch.
Flugelhorn in Eb

- Real ped. notes
- Virtual ped. notes
- Standard range
- 'Pro' range

Alto Trombone *

- Real ped. notes
- Virtual ped. notes
- Standard range
- 'Pro' range

* Alto trombone parts are often written in alto clef, pedal notes are seldom used

Tenor Trombone

- Real ped. notes
- Virtual ped. notes
- Standard range
- 'Pro' range

Tenor Bass Trombone

- Pedal notes
- F valve sounds
- Standard range
- 'Pro' range

* on the real instrument B1 is obtained with a fake position
Bass Trombone

Written & Concert

* Pedal notes

Standard range

‘Pro’ range

* on the real instrument B1 is obtained with a false position, B0 does not exist

Double Bass Trombone

Written & Concert

* Pedal notes

Standard range

‘Pro’ range

* on the real instrument A1 is a pedal note, Bb1 can be a pedal note or not, A0 does not exist

French Horn in F *

Written in F

Concert

* Pedal notes

Standard range

‘Pro’ range

* The modern Double French Horn has two sets of tubing, one in F and one in Bb

Horn in Bb *

Written in F

Concert

* Pedal notes

Standard range

‘Pro’ range

* The modern Double French Horn has two sets of tubing, one in F and one in Bb
Euphonium

Pedal notes 4th valve notes Standard range "Pro" range

Tuba in Eb

Pedal notes 4th valve notes Standard range "Pro" range

Bass Tuba

Pedal notes 4th valve notes Standard range "Pro" range
Tips and Troubleshooting

For comprehensive information, FAQs, and more detailed articles, please refer to our Knowledge Base at kb.audiomodeling.com.

No sound

The three most common causes for not getting any sound from a SWAM instrument are:

1. The audio device or audio output may not be correctly assigned. In the Standalone app, navigate to Main Menu -> Settings -> Audio, and select the proper audio device and output channels. If you are using a DAW or host, consult the user manual of the host application.

2. The MIDI device may not be correctly selected. In the Standalone app, navigate to Main Menu -> Settings -> MIDI, and select the proper MIDI device. If you are using a DAW or host, consult the user manual of the host application.

3. The Expression parameter may not have been moved, automated, or controlled by an external MIDI device since the instrument was instantiated.

Ours are expressive instruments. Unlike standard sample libraries, our instruments do not work until the Expression control is changed by an Expression pedal, Breath Controller, wheel, knob, slider, Wind Controller, Seaboard, LinnStrument, Touché, mobile App capable of sending MIDI data, or other MIDI CC11 source.

Can a saxophone emit a sound without blowing into it? Can a violin emit a sound without moving the bow?

Please watch this introductory playlist:

https://youtube.com/playlist?list=PLT7qu1yXoV4HpBDsrDKbViJKOlhtpsNAI

We provide Factory presets for several MIDI controllers: click "MIDI", click "PRESETS", and choose a preset from the list.

The default mapping for the Expression control at startup is the MIDI CC11, which is typically assigned to a keyboard Expression pedal.

The Expression assignment can be customized to match your controller: click "MIDI", click on the Expression Slider, and input the MIDI CC number.
For MIDI keyboards not equipped with an Expression pedal, a good start often is to map Expression to CC1 (Mod Wheel) and Vibrato Depth to AfterTouch (AT).

You can use the Learn button and move your controller. In this mode, the instrument recognizes the first incoming CC number and automatically assigns it to the Expression setting.

Even without a physical controller, on a DAW or sequencer you need to draw expression curves (or envelopes) or automations. Please refer to the user manual of your DAW in order to know how to provide MIDI CC curves or automations.

You can find a Getting Started tutorial for most DAWs on our knowledge base https://kb.audiomodeling.com/en/c/how-to

Understanding Ambiente

What is Ambiente and why should I use it?

Ambiente is a sophisticated room simulator initially developed as an essential component of SWAM String Sections. Unlike standard reverb effects, Ambiente positions instruments within a 3D virtual space, simulating the reflections of sound waves through geometric calculations. This creates a more realistic spatial experience.

Why use Ambiente if you already have effects and reverbs?

Ambiente provides more immersive and precise spatial positioning than traditional reverb effects. It enhances the natural and authentic sound of SWAM Solo Strings, SWAM Solo Woodwinds, and SWAM Solo Brass, significantly elevating the realism and coherence of soundscapes.

Can I move just one section to a different room?

No, the SWAM String Sections are designed to function as a unified entity within the same room environment to maintain consistency and avoid paradoxical situations.

What is the purpose of having multiple rooms in the Ambiente room simulator?

The Ambiente room simulator offers the flexibility to choose and shape sounds in different rooms, similarly to how different recording studios use various acoustic environments. Larger rooms can be used for string sections to produce a broad, reverberant sound, while smaller rooms can be used for solo instruments to create a more intimate sound.

Why do SWAM instruments need to use the local network?
With the introduction of SWAM String Sections and the v3.8.0 update for SWAM Solo instruments, all products now feature the Ambiente room simulator. This simulator communicates with other plugin instances across the local network, allowing synchronized operations and settings across all instances, saving time, reducing errors, and ensuring consistent results.

“Communication between instances failed” warning message

If you encounter a communication error between SWAM plugin instances, it may be due to insufficient network permissions. This issue can typically be resolved by ensuring that multicast communication is enabled for SWAM instances. For instructions on how to set local network permissions, please refer to the Local Network Permission section in this manual.

Issues when opening Logic Pro projects or templates

When opening Logic Pro projects or templates that have been saved without MIDI data, if the "Only load plug-ins needed for project playback" option is enabled in your project settings (File -> Project Settings), SWAM instruments in Ambiente will not be displayed until you open each plugin instance. This occurs because Logic Pro disables plugins on tracks without MIDI data, preventing Ambiente from communicating with the other SWAM instances until each plugin is selected and enabled.

We strongly recommend deselecting the "Only load plug-ins needed for project playback" option.
What are SWAM Templates?

Templates replace "Quick Reset" and "MIDI Preset" to clarify the difference between applying/resetting settings and recalling a complete preset. In the SWAM ecosystem, "Presets" mainly refers to the synthesis engine and sound engine data, combined with other settings like MIDI Mapping, Micro Tuning, and Room Simulator configurations.

When applying a template, you modify specific system parts, such as MIDI Mapping or Room Simulator settings, without altering the sound. This terminology shift helps users better understand and utilize the different functionalities within the SWAM ecosystem.

Why is it called the SWAM Ecosystem now?

With the introduction of SWAM String Sections and the v3.8.0 update for SWAM Solo instruments, all products now include the Ambiente room simulator. This integration allows instruments to interact within the same virtual room, making it possible to build a cohesive orchestral sound.
Backward compatibility with previous versions: Legacy Reverb mode explained

Ensuring compatibility for DAW projects

When updating to SWAM v3.8.0, DAW projects saved with versions 3.7.3 or earlier will automatically open with Legacy Reverb Mode enabled, deactivating the new Ambiente room simulator to ensure consistent sound results. This allows users to continue their work without unexpected changes in audio output.

Preset import and Legacy Reverb mode notification

Presets saved in version 3.7.3 or earlier can be imported into v3.8.0, and the default setting will apply the new Room Simulator. Users will be notified of this change, with the option to switch back to Legacy Reverb Mode if the original sound is preferred.

Compatibility of presets between versions

- **Forward Compatibility**: Presets created in version 3.7.3 or earlier are fully compatible with v3.8.0.
- **Backward Compatibility**: Presets saved in version 3.8.0 are not guaranteed to be compatible with earlier versions and may result in errors.

Transition information for new Ambiente room simulator

1. **Standalone Mode**: When opening the new version 3.8.0 in standalone mode, instruments will start with the Room Simulator active. A popup will notify users that the instrument now has a Ambiente room simulator effect instead of the basic reverb from previous versions.

2. **DAW Projects**: When opening a DAW project using v3.7.3 instruments after updating to v3.8.0, instruments will start in Legacy Reverb mode to preserve the project’s sound. It is recommended to manually switch to the Room Simulator by deactivating Legacy Reverb mode.

3. **Importing Presets**: When importing a preset saved from version 3.7.3 or earlier, the instrument will start with the Room Simulator active, and a popup will notify the user of this change. Users can switch to Legacy Reverb mode if desired.

4. **Loading Presets**: When loading a Factory or User preset in v3.8.0 that uses a different room setting than the current one, the instrument will ask if you want to overwrite the current room or keep the existing settings.
5. **DAW Sessions:** When loading a new instrument with a different room setting than the current one in a DAW session, the instrument will adopt the current room setting.

6. **Loading Room Templates:** When loading a Room Template in a DAW session, the current room will be replaced with the template room setting.

Best practices for adding multiple solo instruments of the same type

When adding multiple solo instruments of the same type, it’s essential to address potential phasing issues, especially when these instruments play in unison or occupy the same spatial position. Here are some best practices:

Understanding phasing issues

Phasing occurs when identical instruments play together, causing interference patterns. To mitigate these issues, SWAM instruments offer several solutions.

Utilizing the Ambiente room simulator

Ensure instruments do not overlap in the same position within the room simulator to avoid phasing issues. Carefully place each instrument in a unique position for a balanced and natural sound.

Customizing instrument characteristics

- **Different Instrument Bodies for Solo Strings:** Select different instrument bodies (e.g., Cremona, Firenze) to diversify sound characteristics.

- **Unison Anti-Phasing for Solo Brass:** Adjust the Unison Anti-Phasing parameter to minimize phasing problems.

- **Different Instruments for Solo Woodwinds:** Choose different woodwind sounds to avoid phase-related distortions.

- **Using Divisi for orchestral sections:** Employ the "divisi" technique to divide a section of instruments so they play different parts, reducing the risk of phasing issues.
Why aren’t SWAM Solo Brass v3.8.0 available for iOS?

The porting process

Porting software to iOS, especially for significant releases like v3.8.0, is complex and time-consuming. Each platform has unique requirements and constraints, necessitating significant development effort.

Platform specific testing

The distinct characteristics of the iOS platform require specialized testing to ensure compatibility and performance. This involves rigorous testing procedures to maintain high-quality standards.

Commitment to Quality

We ensure that each update undergoes extensive testing and optimization to meet our standards. We are working diligently to bring these updates to iOS as soon as possible.

Expected availability

We are actively working on the necessary adaptations to make SWAM Solo Brass v3.8.0 available for iOS at the earliest possible time. We appreciate your patience and understanding.
Technical Support

Before requesting technical support, please make sure you have carefully read the User Manual and the FAQs on our Support Center at audiomodeling.com/support.

There, you’ll quickly find appropriate answers to most questions.

Should you still need technical support, please contact the SWAM support team at support@audiomodeling.com or open a Ticket through our Support Center.

Note: Please ensure you enter your email address carefully — it’s not possible for us to reply to an incorrect email address.

When requesting technical support, please don’t forget to provide as much system information as possible, including your type of computer, OS, audio interface, host application, software version, etc. If the problem can be replicated, a MIDI and/or an audio file is usually very helpful.

In order to provide effective and quick support, please include a reference to either the user account, order number or one of the License Keys.